重定向消息

一个令人担忧的全球趋势凸显了摄入非法酿造的酒精可能造成的严重危害。用工业溶剂(即木醇)制备并作为酒精饮料的家用蒸馏酒通常含有甲醇。这种成分会导致失明,摄入后会导致死亡。这在多个大洲造成了致命的后果[1-3]。

捷克共和国的转折点出现在2012年9月。在20人因食用甲醇含量危险的烈酒而死亡后,烈性酒的销售被暂时禁止[2]。在使用不同的筛选工具进行了详尽的研究后,捷克共和国选择拉曼光谱法作为鉴定和定量受污染烈酒中甲醇的方法。

本应用报告讨论了拉曼光谱是该应用的理想选择的原因,并展示了掺甲醇朗姆酒拉曼分析的真实例子。

Raman spectroscopy is a fast and easy analytical tool for quantifying the amount of methanol contamination present in alcoholic beverages. It is an ideal method for the discrimination of very similar molecules like ethanol (CH3CH2OH) and methanol (CH3OH), as shown in Figure 1.

Figure 1. Raman spectra of pure ethanol (green) and pure methanol (blue).

Raman spectroscopy is superior to comparative technologies such as infrared spectroscopy (e.g., FTIR) because of its:

  • ability to measure through optically transparent containers
  • insensitivity to interference from water

These two key properties enable accurate detection of methanol down to approximately 1% by volume in the field with no need to open the bottles being tested.

An in-house study measured commercially available coconut rum that was spiked with methanol in concentrations between 0.33% and 5.36%. The i-Raman® Plus, a sensitive high resolution laboratory system with a fiber-optic probe, was used to collect Raman spectra of the mixtures, shown in Figure 2. Table 1 lists the relevant equipment and instrument settings used for this application study.

Figure 2. Raman spectra of methanol-laced rum with varying concentrations of methanol. Inlay: The peak noted with the arrow grows with increasing concentration of methanol.

The peak at around 1000 cm-1 visibly increases with increasing concentration of methanol, becoming significant at approximately 1%.

Table 1. Experimental parameters.

Equipment Acquisition settings
i-Raman Plus 785S Laser Power 100
Vial holder (NR-LVH) Int. time 20s
Vision Software Average 1

This data was analyzed with Vision software, and a partial least squares (PLS) regression model was developed on normalized data. The two-factor model developed over the range from 920–1580 cm-1 gave the calibration curve shown in Figure 3, which has a root mean square error of cross-validation (RMSECV) of 0.1069 (Table 2). The R2 value of 0.9977 shown in Table 2 means that the Raman method used here can be used to confidently quantify the amount of methanol in a mixed alcohol sample.

Figure 3. PLS regression model to predict the amount of methanol in rum.

Table 2. Regression parameters used for the development of the PLS model to determine methanol in rum with the i-Raman Plus 785S.

Parameter Value
Spectral processing Standard Normal Variate
Savitzky-Golay derivative
R2 0.9977
RMSEC 0.0976
RMSECV 0.1069

These results verify that Raman can be used for rapid, quantitative screening of dangerous adulterants in alcoholic beverages that pose a public safety risk. This technique can be expanded to investigate adulteration in other media such as food, petroleum, and pharmaceutical drugs [4].

  1. Lachenmeier, D. W.; Schoeberl, K.; Kanteres, F.; Is Contaminated Unrecorded Alcohol a Health Problem in the European Union? A Review of Existing and Methodological Outline for Future Studies. Addiction 2011, 106 (s1), 20–30. https://doi.org/10.1111/j.1360-0443.2010.03322.x.
  2. Spritzer, D.; Bilefsky, D. Czechs See Peril in a Bootleg Bottle. The New York Times. USA September 17, 2012.
  3. Collins, B. Methanol Poisoning: The Dangers of Distilling Spirits at Home. ABC. Australia June 13, 2013.
  4. Gryniewicz-Ruzicka, C. M.; Arzhantsev, S.; Pelster, L. N.; et al. Multivariate Calibration and Instrument Standardization for the Rapid Detection of Diethylene Glycol in Glycerin by Raman Spectroscopy. Appl Spectrosc 2011, 65 (3), 334–341. https://doi.org/10.1366/10-05976.
咨询

瑞士万通中国

北京市海淀区上地东路1号院1号楼7层702
100085 北京

咨询