Chuyển hướng tin nhắn

METROHM VIETNAM YOUNG ELECTROCHEMIST AWARD 2023

Award-Young-Electrochemistry-Award-2023
Giải thưởng: Tiền mặt Giải nhất: 12,000,000 VND và đồng Giải nhì: 6,000,000 VND

Bạn là sinh viên, đã tốt nghiệp, học viên cao học hoặc nghiên cứu sinh tại Việt Nam?  Hãy tham gia ngay để có cơ hội giành giải thưởng Nhà Điện Hóa Trẻ 2023.

Nộp bài báo và lý lịch khoa học cho Metrohm Việt Nam đến hết ngày 31/10/2023 tại email: info@metrohm.vn.

Giải thưởng:

  • Giải nhất: 12,000,000 VND
  • Đồng giải nhì: 6,000,000 VND

Chúc bạn may mắn!

Thí sinh đã đoạt giải MYCA

 

Những thí sinh đã đoạt giải thưởng

1. Giải nhất

Lê Hồng Quân - Chi nhánh ven biển – Trung tâm Nhiệt đới Việt-Nga. Công trình: “Chitosan-derived carbon aerogel nanocomposite as an active electrode material for high-performance supercapacitors”

2. Giải nhì

Phan Lê Phúc, Trần Nguyên Thủy Tiên –  Trường Đại Học Khoa Học Tự Nhiên – Đại Học Quốc Gia TPHCM. Công trình: “Highly Efficient and Stable Hydrogen Evolution from Natural Seawater by Boron-Doped Three-Dimensional Ni2P−MoO2 Heterostructure Microrod Arrays”

Nguyễn Ngọc Huyền -  Trường Đại học Phenikaa. Công trình: “Insights into the Effect of Cation Distribution at Tetrahedral Sites in ZnCo2O4 Spinel Nanostructures on the Charge Transfer Ability and Electrocatalytic Activity toward Ultrasensitive Detection of Carbaryl Pesticide in Fruit and Vegetable Samples”

3. Giải khuyến khích

Châu Ngọc Thiện -  Trường Đại học Bách khoa – ĐHQG TPHCM

Nguyễn Ngọc Tuân -  Trung tâm INOMAR – ĐHQG TPHCM

Phạm Tuyết Nhung -   Trường Đại học Phenikaa

Hồ xuân Anh Vũ -  Trường Đại học Khoa học - Đại học Huế

Nguyễn Tiến Đạt -  Trường Đại học Khoa học và Công nghệ Hà Nội

Vũ Minh Thư -  Trường Đại học Khoa học và Công nghệ Hà Nội

Hoàng Thị Thanh Thúy -  Trường Đại học Phenikaa

Thieu Quang Quoc Viet - College of Engineering Technology, Can Tho University

Đề tài: Spinel Ni-ferrite advanced high-capacity anode for Li-ion batteries prepared via coprecipitation route

A nanostructured Ni-ferrite material, NiFe2O4, was successfully synthesized via facile co-precipitation in hot water, followed by an annealing process. The developed Ni-ferrite was face-centered cubic, highly crystalline, and nano-sized. The Ni-ferrite anode revealed superior electrochemical properties for Li-ion batteries, such as high reversible capacity and long cyclability, without significant capacity fading. Specifically, this anode exhibited reversible capacities of 926 and 1586 mAh g− 1 at the 1st and 150th cycles at 0.1 A g− 1, respectively. The superior electrochemical performance was attributed to the size and unique properties of the Ni-ferrite spinel. Nano-sized materials were beneficial for creating a large contact area between the electrode and electrolyte, increasing diffusion rates of lithium ions, resulting in enhanced pseudo-behavior. The properties of spinel structure and the presence of Fe and Ni metals during charge/discharge in Ni-ferrite prevented the destruction of the anode and catalyzed the decomposition of the Li2O phase, leading to extraordinary highly-reversible Li storage.

Pham Tuyet Nhung - Phenikaa University Nano Institute (PHENA), Phenikaa University

Đề tài: Insight into the Influence of Analyte Molecular Structure Targeted on MoS2‑GO-Coated Electrochemical Nanosensors

MoS2-GO composites were fabricated by an ultrasonication method at room temperature. Raman spectra, emission scanning electron microscopy (SEM), and transmission electron microscopy (TEM) images were used to study the structural characteristics, morphologies, and sizes of the synthesized materials. An MoS2-GO/SPE (screen-printed electrode) was prepared by a facile dropping method and acted as an effective electrochemical sensor toward clenbuterol (CLB) and 4-nitrophenol (4-NP) detection. Based on the obtained results, the influence of analyte molecular structure on the adsorption ability and electronic interoperability between the targeted analyte and electrode surface were investigated in detail and discussed as well, through some electrochemical kinetic parameters (electron/proton-transfer number, electron transfer rate constant (ks), charge transfer coefficient, and adsorption capacity (Γ)). In particular, it should be stressed that 4-NP molecules possess a simple molecular structure with many positive effects (electronic, conjugation, and small steric effects) and flexible functional groups, resulting in fast electron transport/charge diffusion and effective adsorption process as well as strong interactions with the electrode surface. Therefore, 4-NP molecules have been facilitated better in electrochemical reactions at the electrode surface and electrode-electrolyte interfaces, leading to improved current response and electrochemical sensing performance, compared with those of CLB.

Phan Nguyen Duc Duoc - Department of Physics, Nha Trang University

Đề tài: A novel electrochemical sensor based on double-walled carbon nanotubes and graphene hybrid thin film for arsenic(V) detection

In this work, we demonstrate the preparation of hybrid thin films based on double-walled carbon nanotubes and graphene for electrochemical sensing applications. The hybrid films were synthesized on polycrystalline copper foil by thermal chemical vapor deposition under low pressure. This carbonaceous hybrid film has exhibited high transparency with a transmittance of 94.3 %. The occurrence of this hybrid material on the electrode surface of screen-printed electrodes was found to increase electroactive surface area by 1.4 times, whereas electrochemical current was enhanced by 2.4 times. Such a highly transparent and conductive hybrid film was utilized as a transducing platform of enzymatic electrochemical arsenic(V) sensor. The as-prepared sensor shows the linear detection of arsenic(V) in the range from 1 to 10 ppb, with a limit of detection as low as 0.287 ppb. These findings provide a promising approach to develop new multifunctional electrochemical sensing systems for environmental monitoring and biomedical diagnostics.

Liên hệ

Nguyễn Thị Minh Hiền (Ph.D)

Quản lý sản phẩm điện hóa
Metrohm Việt Nam

Liên hệ