

Application Note AN-NIR-115

Multiparameter quality control of palm oil with NIR spectroscopy

Obtain fast and reliable results without using any chemicals

Palm oil is currently the most widely produced and consumed vegetable oil globally and is used as a raw material in many industries. Crude palm oil (CPO) is used in various edible products, including cooking oil, margarine, and processed foods. CPO can be refined to remove impurities and improve color, flavor, and odor. Several steps are involved (e.g., degumming, neutralization, bleaching, deodorization) to produce refined bleached deodorized palm oil (RBDPO). RBDPO is used for frying purposes and

is also found in foods like instant noodles and ice cream.

If the palm oil composition is found to be out of specification during production, the process stops, and the oil is recycled. Determination of key quality parameters like iodine value and the fatty acid profile of palm oil can be determined easily in just a few seconds without sample preparation using near-infrared spectroscopy (NIRS).

EXPERIMENTAL EQUIPMENT

In this application, 20 samples of crude palm oil (CPO) and 30 samples of refined, bleached, deodorized palm oil (RBDPO) were kept in a water bath at 60 ° C for at least 30 minutes to liquify them. All samples were measured with an OMNIS NIR Analyzer Liquid in transmission mode at 60 ° C using 8 mm disposable vials. Data acquisition and prediction model development were performed with OMNIS software.

Gas chromatography (GC) was used as a reference method after the methyl esterification of the fatty acids. The concentration of the fatty acids was derived from the corresponding peak area. Determination of iodine value in palm oil was possible by a calculation from the combined concentrations of oleic acid (18:1) and linoleic acid (18:2) according to the obtained fatty acid composition of palm oil.

Another set of CPO samples (681) was used to determine the water content. These samples were treated in the same manner as described above and measured using NIR spectroscopy. Karl Fischer (KF) titration was used as a standard method in this case.

Figure 1. OMNIS NIR Analyzer and a sample filled in a disposable vial.

Table 1. Hardware and software equipment overview.

Equipment	Metrohm number
OMNIS NIR Analyzer Liquid	2.1070.0010
Holder OMNIS NIR, vial, 8mm	6.07401.070
Disposable vial, 8mm, transmission	6.7402.240
OMNIS Stand-Alone license	6.06003.010
Quant Development software license	6.06008.002

RESULT

The measured NIR spectra of CPO (Figure 2) and of RBDPO (Figure 3) were used to create prediction models for the quantification of iodine value (IV), linoleic acid (18:2), oleic acid (18:1), and palmitic acid (16:0) for the two different palm oils. A quantification model was created for water content present in palm oil using another set of CPO samples.

The quality of the prediction models was evaluated using correlation diagrams (Figures 4–12) which display a high correlation between the NIR predictions and the results given by primary methods (i.e., GC and KF titration). The respective figures of merit (FOM) display the expected precision and confirm the feasibility during routine analysis.

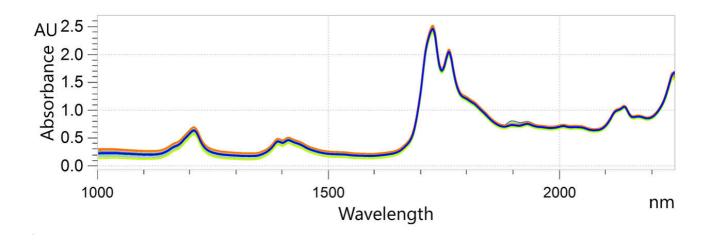


Figure 2. Overlay of NIR spectra from CPO samples analyzed on an OMNIS NIR Analyzer Liquid at 60 ° C.

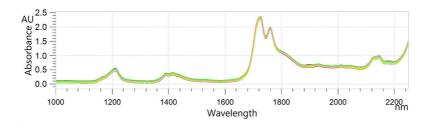
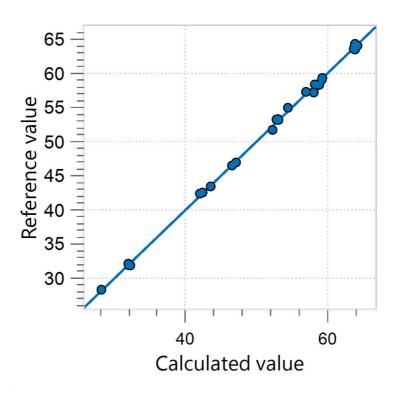



Figure 3. Overlaid NIR spectra of RBDPO samples analyzed on an OMNIS NIR Analyzer Liquid at 60 ° C.

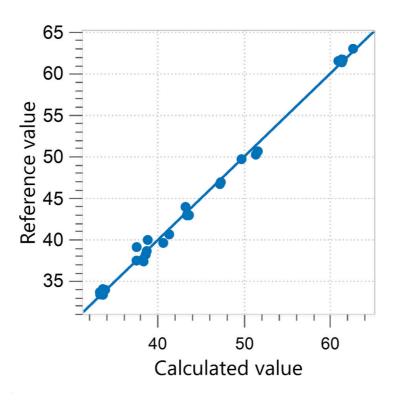

RESULT IV IN RBDPO

Figure 4. Correlation diagram and the respective figures of merit for the prediction of iodine value in RBDPO using an OMNIS NIR Analyzer Liquid. The reference values were evaluated using GC.

Parameter	SEC(mg/100g)	SECV(mg/100g)	R2CV
IV	0.31	0.34	0.999

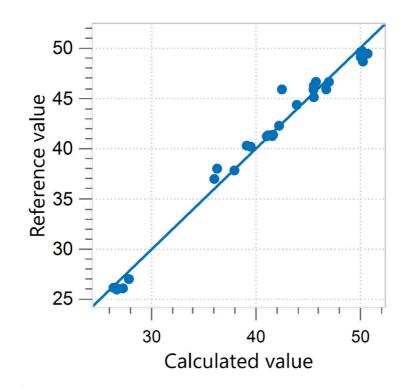

RESULT PALMITIC ACID (16:0) IN RBDPO

Figure 5. Correlation diagram and the respective figures of merit for the prediction of palmitic acid (16:0) in RBDPO using an OMNIS NIR Analyzer Liquid. The reference values were evaluated using GC.

Parameter	SEC (%)	SECV (%)	R2CV
16:0	0.53	0.63	0.996

RESULT OLEIC ACID (18:1) IN RBDPO

Figure 6. Correlation diagram and the respective figures of merit for the prediction of oleic acid (18:1) in RBDPO using an OMNIS NIR Analyzer Liquid. The reference values were evaluated using GC.

Parameter	SEC (%)	SECV (%)	R2CV
18:1	0.75	0.98	0.985

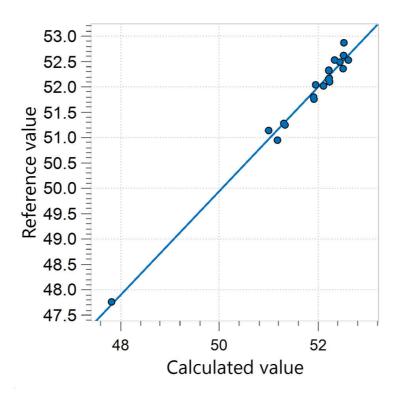

RESULT LINOLEIC ACID (18:2) IN RBDPO

Figure 7. Correlation diagram and the respective figures of merit for the prediction of linoleic acid (18:2) in RBDPO using an OMNIS NIR Analyzer Liquid. The reference values were evaluated using GC.

Parameter	SEC (%)	SECV (%)	R2CV
18:2	0.14	0.21	0.994

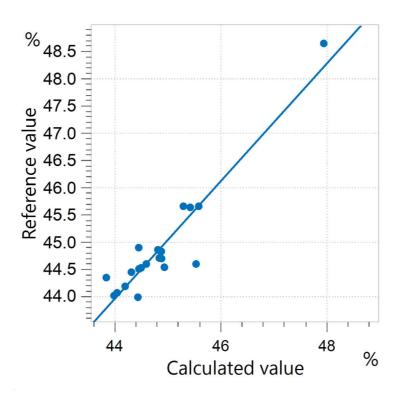

RESULT IV IN CPO

Figure 8. Correlation diagram and the respective figures of merit for the prediction of iodine value in CPO using an OMNIS NIR Analyzer Liquid. The reference values were evaluated using GC.

Parameter	SEC(mg/100g)	SECV(mg/100g)	R2CV
IV	0.11	0.14	0.984

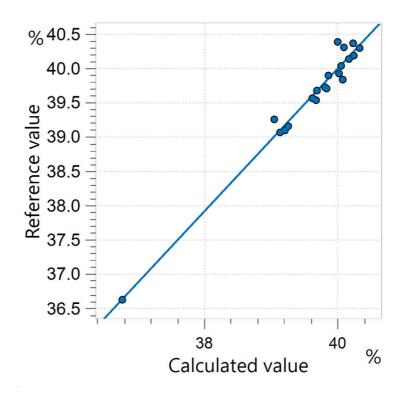

RESULT PALMITIC ACID (16:0) IN CPO

Figure 9. Correlation diagram and the respective figures of merit for the prediction of palmitic acid (16:0) in CPO using an OMNIS NIR Analyzer Liquid. The reference values were evaluated using GC.

Parameter	SEC(%)	SECV(%)	R2CV
16:0	0.11	0.14	0.984

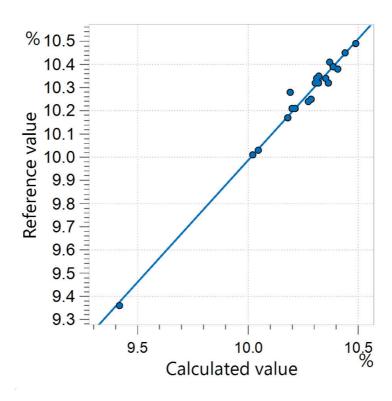

RESULT OLEIC ACID (18:1) IN CPO

Figure 10. Correlation diagram and the respective figures of merit for the prediction of oleic acid (18:1) in CPO using an OMNIS NIR Analyzer Liquid. The reference values were evaluated using GC.

Parameter	SEC(%)	SECV(%)	R2CV
18:1	0.12	0.14	0.969

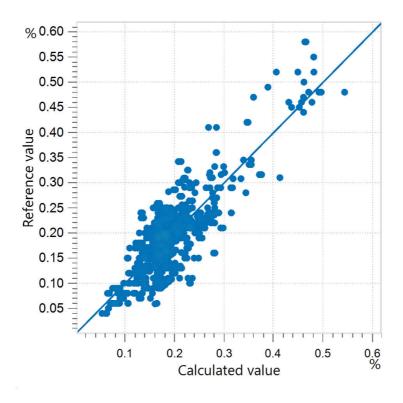

RESULT LINOLEIC ACID (18:2) IN CPO

Figure 11. Correlation diagram and the respective figures of merit for the prediction of linoleic acid (18:2) in CPO using an OMNIS NIR Analyzer Liquid. The reference values were evaluated using GC.

Parameter	SEC(%)	SECV(%)	R2CV
18:2	0.02	0.03	0.984

RESULT WATER CONTENT IN CPO

Figure 12. Correlation diagram and the respective figures of merit for the prediction of water content in CPO using an OMNIS NIR Analyzer Liquid. The reference values were evaluated using KF titration.

Parameter	SEC(%)	SECV(%)	R2CV
Water	0.044	0.044	0.714

CONCLUSION

This Application Note displays the benefit of using the OMNIS NIR Analyzer Liquid for routine analysis in laboratories that measure various palm oil quality parameters. Compared to other conventional methods like Karl Fischer titration

and GC, determinations with NIR spectroscopy do not require any sample preparation or chemical reagents. This ultimately leads to a reduction in workload (**Table 2**) and costs.

Table 2. Time to result overview for the parameters of iodine value, fatty acid composition, and water content in palm oil by standard methods.

Parameter	Method	Time to result
lodine value, Fatty acid composition	Gas chromatogra phy	~30 min sample preparation (Methyl esterification + sample preparation) + ~20 min GC
Water content	KF titration	~10 min per sample

Internal reference: AW NIR CH-0066-042023

CONTACT

瑞士万通中国 北京市海淀区上地路1号院 1号楼7702 100085 北京

marketing@metrohm.co m.cn

CONFIGURATION

OMNIS NIR Analyzer Liquid 合液体品的近外光。

OMNIS NIR Analyzer 是一按照瑞士量准和生的近外 光 (NIRS) 解决方案,用于整个生的常分析。使用新技 和嵌入先 OMNIS Software 反在 NIR 光的速度、可 操作性和活使用上。

OMNIS NIR Analyzer Liquid 的点概:

- 可在 10 秒以内量液体品
- 25° C-80° C的品行温度控制
- 自品容器的插入和取出
- 方便地嵌入自系,或者与其它分析技(滴定)
- 支持大量不同路径度的品容器

OMNIS NIR8 mm

合 8 mm 一次性小管的 OMNIS NIR Analyzer 的小管支架 (6.7402.240)。

8 mm 100

100 个玻璃(硼硅)一次性品瓶,具有 8 mm 的光路度, 用于分析透射中的液体。一次性品瓶交付有所属的螺旋塞(件数 = 100)。

兼容:

- 支架 OMNIS NIR,小管,8 mm (6.07401.070)
- DS2500 支架用于 8 mm 一次性品瓶 (6.7492.020)

OMNIS

允机版 OMNIS 件在一台 WindowsTM 算机上行。 特性:

- 可已含有一 OMNIS 可。
- 通万通可授平台行激活。
- 不可再外算机上使用。

Quant Development

用于在独立 OMNIS Software 安装套件中写和量化 模型的件可。

