

Application Note AN-NIR-110

甘蔗汁的量控制

Multiparameter determination within one minute using NIRS

Sugarcane (*Saccharum* spp.) is a very important crop for the global economy. It is often used as a raw material for the production of sugar, alcohol, yeast, and more. Brix (° Brix), Pol (%), juice purity (%), reducing sugars (%), and total recoverable sugars (Kg t⁻¹) are some of the many quality control (QC) parameters that must be analyzed in sugarcane juice.

Numerous methods based on several analytical

techniques are available for sugarcane juice quality control. These methods can be quite time-consuming since sample treatment is a prerequisite. A quicker alternative to these other methods is near-infrared spectroscopy (NIRS). NIRS allows the simultaneous determination of several QC constituents, without chemicals or sample preparation, in less than one minute.

EXPERIMENTAL EQUIPMENT

Sugarcane juice was analyzed by NIRS, and a total of 100 spectra were collected to create a prediction model for quantification of several QC parameters. All samples were measured with a Metrohm NIRS DS2500 Liquid Analyzer (400–2500 nm) in transmission mode with a

DS2500 Holder Flow Cell (Figure 1). A flow cell with 1 mm pathlength was used in this study. This flow cell was filled via peristaltic pump. The Vision Air Complete software package from Metrohm was used for all data acquisition and prediction model development.

Table 1. Hardware and software equipment overview.

Equipment	Article number
DS2500 Liquid Analyzer	2.929.0010
DS2500 Holder Flow cell	6.7493.000
NIRS quartz cuvette flow 1 mm	6.7401.310
Vision Air 2.0 Complete	6.6072.208

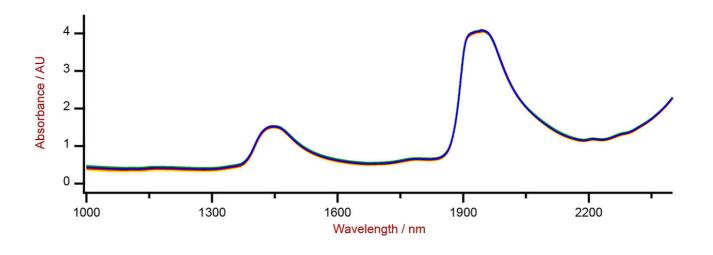
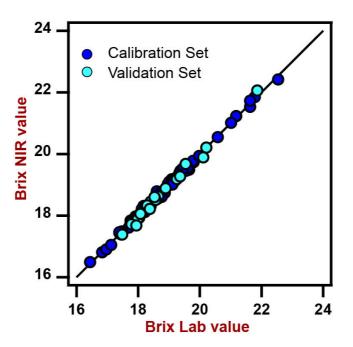


Figure 1. Metrohm NIRS DS2500 Liquid Analyzer and DS2500 Holder Flow Cell used for the fast determination of several QC parameters in sugarcane juice.

RESULT


The obtained Vis-NIR spectra (**Figure 2**) were used to create a prediction model for quantification of Brix ($^{\circ}$ Brix), Pol ($^{\circ}$), juice purity ($^{\circ}$), reducing sugars ($^{\circ}$), and total recoverable sugars (Kg t⁻¹). The quality of the prediction model was evaluated using

correlation diagrams which display a very high correlation between the Vis-NIR prediction and the reference values. The respective figures of merit (FOM) display the expected precision of a prediction during routine analysis (Figures 3–8).

Figure 2. Selection of Vis-NIR spectra of sugarcane juice samples analyzed on a DS2500 Liquid Analyzer with a 1 mm pathlength flow cell.

RESULT BRIX

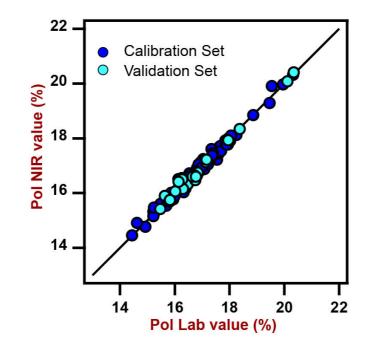


Figure 3. Correlation diagram and the respective FOMs for the prediction of Brix in sugarcane juice using a DS2500 Liquid Analyzer. Laboratory values were evaluated using a refractometer.

Figures of Merit	Value
R ²	0.9875

Standard Error of Calibration	0.1323 (° Brix)
Standard Error of Cross-Validation	0.1467 (° Brix)
Standard Error of Validation	0.138 (° Brix)

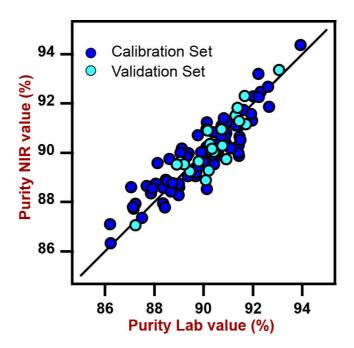

RESULT POL

Figure 4. Correlation diagram and the respective FOMs for the prediction of Pol in sugarcane juice using a DS2500 Liquid Analyzer. Laboratory values were calculated from the sucrose reading, Brix, and a few constants.

Figures of Merit	Value
R^2	0.9833
Standard Error of Calibration	0.1506%
Standard Error of Cross-Validation	0.1851%
Standard Error of Validation	0.1388%

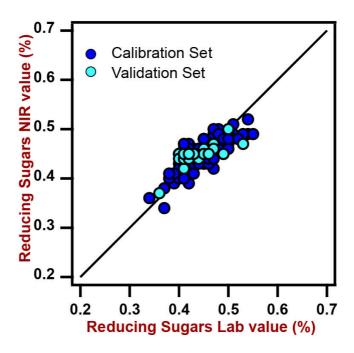

RESULT PURITY

Figure 5. Correlation diagram and the respective FOMs for the prediction of sugarcane juice purity using a DS2500 Liquid Analyzer. Laboratory values were calculated using the results from Pol and Brix determinations: Purity = $100 \times (Pol/Brix)$.

Figures of Merit	Value
R^2	0.8194
Standard Error of Calibration	0.7202%
Standard Error of Cross-Validation	0.7596%
Standard Error of Validation	0.564%

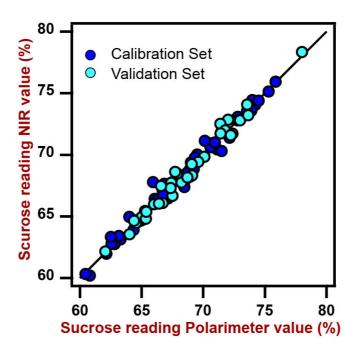

RESULT REDUCING SUGARS

Figure 6. Correlation diagram and the respective FOMs for the prediction of reducing sugars in sugarcane juice using a DS2500 Liquid Analyzer. Laboratory values were measured with ion chromatography (IC).

Figures of Merit	Value
R ²	0.6497
Standard Error of Calibration	0.0263%
Standard Error of Cross-Validation	0.0291%
Standard Error of Validation	0.0249%

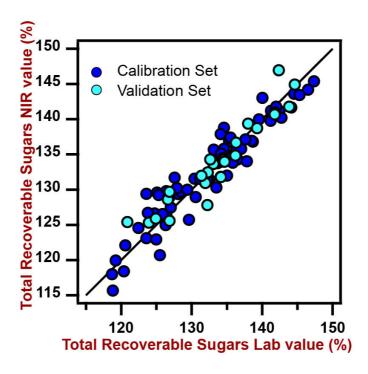

RESULT SUCROSE

Figure 7. Correlation diagram and the respective FOMs for the prediction of sucrose reading in sugarcane juice using a DS2500 Liquid Analyzer. Laboratory values were evaluated with a polarimeter.

Figures of Merit	Value
R ²	0.9911
Standard Error of Calibration	0.5388%
Standard Error of Cross-Validation	0.6604%
Standard Error of Validation	0.497%

RESULT TOTAL RECOVERABLE SUGARS

Figure 8. Correlation diagram and the respective FOMs for the prediction of total recoverable sugars in sugarcane juice using a DS2500 Liquid Analyzer. Laboratory values were evaluated using Pol and reducing sugars values: TRS = $(9.5263 \times Pol) - (9.05 \times RS)$.

Figures of Merit	Value
R ²	0.9463
Standard Error of Calibration	2.2985%
Standard Error of Cross-Validation	2.5118%
Standard Error of Validation	1.9074%

CONCLUSION

This Application Note demonstrates the feasibility to determine Brix, Pol, juice purity, reducing sugars, and total recoverable sugars in sugarcane juice with NIR spectroscopy. Vis-NIR

spectroscopy enables a fast and highly accurate alternative to other standard methods (**Table 2**). No sample preparation is required, and results are delivered in less than a minute.

Table 2. Time to result overview for the different quality control parameters typically measured in sugarcane juice.

Parameter	Method	Time to result
Brix	Refractometer	~1 min
Pol	Calculated from Pol and Brix, as well as the application of a few constants	\sim 10 min sample preparation (clarification & filtration) + \sim 1 min polarimeter + \sim 1 min refractometer
Purity	Calculated from Pol and Brix	Purity = 100 × (Pol/Brix)
Reducing sugars (RS)	Ion Chromatography	10 min sample preparation (clarification & filtration) + ~40 min IC
Sucrose reading	Polarimeter	~10 min sample preparation (clarification & filtration) + ~1 min polarimeter
Total recoverable sugars (TRS)	Calculated from Pol and reducing sugars	$TRS = (9.5263 \times Pol) - (9.05 \times RS)$

Internal reference: AW NIR CH-0073-042023

CONTACT

瑞士万通中国 北京市海淀区上地路1号院 1号楼7702 100085 北京

marketing@metrohm.co m.cn

CONFIGURATION

DS2500 Liquid Analyzer 固的近外光,用于生境和室中的量。

DS2500 Liquid Analyzer 是一成熟且活的解决方案 ,其用于在整个生中行液体常分析。其固的使 DS2500 Liquid Analyzer 不受灰、潮湿、振的影,因此非常用 于在劣的生境中使用。

DS2500 Liquid Analyzer 覆盖 400 至 2500 nm 的整个光范,将品加至 80°C 高温,并与各不同的一次性小瓶和石英比色皿兼容。因此,DS2500 Liquid Analyzer 可的个性化品要求,助在一分内得精和具有可重性的果。借助集成的品架装置和自的 Vision Air 件,保了用能松和安全地行操作。

如果是大的品量,可通将流通池与一个 Metrohm 机器人自器搭配使用的方法著提高生率。

