Characterization of carbon
materials with Raman

spectroscopy
Following the guidelines of ASTM E3220

Carbon nanomaterials such as graphene,
graphite, and carbon nanotubes each have
unique physical and thermal properties that
make them important in industries as varied as
battery manufacturing, construction, and sports
equipment. The necessity for simple, safe, and
robust characterization of these materials grows
as they are more widely used in manufacturing
settings.
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Raman spectroscopy is a valuable tool for the
characterization of carbon nanomaterials due to
its selectivity, speed, and ability to measure
samples nondestructively. Carbon materials
typically exhibit simple Raman spectra, but they
contain a wealth of information about internal
microcrystalline structures in peak position,
shape, and relative intensity.

L2 Metrohm



INTRODUCTION

Raman spectra of graphene-based materials, like
those in Figure 1, are characterized by three
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major peaks: the G-band, the D-band, and the
2D-band.
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Figure 1. Structure of different carbon allotropes.

The G-band appears near 1580 cm™' and
represents the in-plane bending motion of
doubly bonded carbon atoms. In high-quality
graphene, the G-band is very sharp, indicating a
high degree of crystallinity. The position of the
G-band is sensitive to the number of graphene
layers but is independent of laser excitation.

The D-band indicates disorder within a
graphene sample. This band arises from a ring
breathing mode for doubly bonded carbon
atoms. In pristine graphene, the D-band is not

visible. The D-band is observed when there is a
defect in the graphene, or the mode is close to
an edge. The D-band exhibits dispersive
behavior, meaning that it is sensitive to the laser
excitation wavelength used in the experiment.
The 2D-band is an overtone of the D-band, and
the peak shape of the 2D-band can be used to
determine layer thickness. Like the D-band, the
2D-band is dispersive and will change slightly
with laser excitation.

RAMAN SPECTRA OF CARBON NANOMATERIALS

If the D-band represents the degree of disorder
and the G-band represents the level of structural
order, then the calculated ratio of D- and G-
band intensities (I5/1;) can be used as a semi-
quantitative parameter to determine the quality
of a graphene sample. As structural disorder
within a sample increases, I/l increases. This
parameter represents a quick quality control
check that can be used as a Pass/Fail test in
manufacturing settings.
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Figure 2 shows Raman spectra from different
carbon nanomaterials. Pristine graphene (red)
contains only G- and 2D-bands; there is no D-
band. The ratio of the intensity of the 2D-band
and the intensity of the G- band (I,/1;) 2.
Graphite (green spectrum) is characterized by a
widened and asymmetrical 2D-band, and the
I,p/lg ratio is much lower. Carbon nanotubes
(black spectrum), which are rolled up tubes of
graphene, exhibit a slightly split G-band [1].
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The curvature of single-walled carbon
nanotubes splits the G-band into two
degenerate modes: G+ and G-. Carbon black
(blue spectrum), which has the least structural
order, exhibits a strong D-band, and therefore

has a high I5/I. Note that laser excitement at a
wavelength other than 532 nm will cause the
slight shifts in the position of the D-band and
2D-band, due to their dispersive nature.
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Figure 2. Raman spectra of graphene (red), carbon nanotubes (black), graphite (green), and carbon black (blue).

EXPERIMENT

Ani-Raman® Prime 532H system was used for all
measurements of graphene-based materials.
The system has a 532 nm laser, which is the laser
wavelength commonly chosen for Raman
measurement of carbon. The i-Raman Prime is a
low-noise, high-throughput, fully integrated
Raman system with an embedded tablet

Table 1. Experimental parameters.

computer.

A probe holder (BAC150B) was used for all
measurements to support the fiber optic probe.
An enclosure system (BAC152Q) is available to
achieve class 1 laser safety for a manufacturing
floor. Typical laser power used is ~34 mW and
acquisition times range from 30-90 s.

Equipment Acquisition settings

i-Raman Prime 532H Laser Power 100%
Probe holder (BAC150) Int. time 30-90s
BWSpec Software Average 1

Determination of I,/1

Guidelines for calculating I5/1 are documented
in ASTM E3220 Standard Guide for
Characterization of Graphene Flakes [2]. Spectra
undergo baseline correction prior to peak

www.metrohm.com

intensity determination. For the spectra in Figure
3, a baseline removal algorithm was applied to
data in the BWSpec software. The sharp peaks at
~1550 cm™" and ~2300 cm™" are attributed to
atmospheric oxygen and nitrogen, respectively.
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After baseline removal, peak intensities of
spectral D- and G-bands are measured and I5/1
can be calculated. The software can be
configured to automatically report I, lg and

derived I/l from a collected spectrum. The

results can be easily exported to a report. Table 2
shows the table that is generated in the

software.

Table 2. Measured ID, IG, and calculated ID/IG from BWSpec software. Data sources align with those in Figure 2.

Source D-band G-band D/G

a 2786.3214 1780.7942 0.7166
b 2184.0956 3037.7693 0.7190
C 851.1320 1457.8104 0.5838
d 1318.5770 2123.2700 0.6210
e 5179.8889 3289.7727 1.5745
f 2786.3214 5583.2101 0.4991

In Figure 3, nanofiber spectra are characterized
by asymmetry in the G-bands. The I/l of
spectrum (a) is particularly high, indicating that
there is a high degree of structural disorder
within that nanofiber sample.

The spectra from the carbon black samples (c—f)
are categorized by broad D-bands and G-bands,
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indicating very low crystallinity within the
samples. Measured I/l for the carbon black
samples are all above 0.5, indicating structural
disorder within the sample. I5/1; can be used as
a quick offline or atline quality control test of
manufactured graphene, graphite, carbon
nanotubes, and carbon black powder.
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Figure 3. Raman spectra of carbon nanofibers (a,b) and carbon black powders (c—f). The insert shows an example of the
baseline correction that was applied to all data. All spectra are manually offset for clarification.

CONCLUSION

Raman spectroscopy is a valuable technique for
characterization of carbon nanomaterials.
Carbon spectra are quite simple and often only
characterized by three peaks.

The peak intensities, shapes, and positions reveal
information about the internal crystallinity of the
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sample. The ratio of the intensity of the D-band
to the intensity of the G-band acts as a simple
indicator of structural disorder or a sample. This
I/l of a sample can be used by researchers and
manufacturers to characterize their carbon
nanomaterials.
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