

Application Note AN-V-197

Indirect determination of iodide in brine with stripping voltammetry

Quantification of iodide in the chlor-alkali process through iodate formation with the hanging mercury drop electrode

Monitoring the iodide concentration in NaCl brine is crucial during membrane process-based chlor-alkali electrolysis. Iodide can easily oxidize to iodate during electrolysis, leading to its precipitation and fouling of the membrane surface. Fouling can reduce the high efficiency of

the membrane process and lead to increased energy consumption and decreased product quality. Therefore, monitoring the iodide concentration can help prevent fouling and protect the expensive membranes used in this process.

Stripping voltammetry, with its low detection limit and quick analysis capabilities, emerges as an attractive tool for the analysis of iodide in highly concentrated brines. By utilizing voltammetry, chlor-alkali plants can effectively

monitor and manage iodide levels, thus preventing membrane fouling. This approach not only preserves membrane durability and function but also results in high performance of the electrolysis process.

SAMPLE

Sodium chloride brine, β (NaCl) = 300 g/L

EXPERIMENTAL

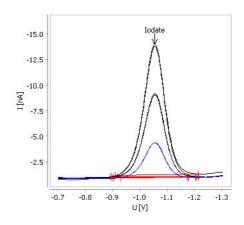
Add 10 mL oxidized sodium chloride brine sample and 2 mL of ultrapure water into the measuring vessel. The determination of iodide is carried out with the 884 Professional VA (Figure 1) using the parameters specified in Table 1. The concentration is determined by two additions of iodate standard addition solution.

Figure 1. 884 Professional VA manual for MME.

Table 1. Parameters

Parameter	Setting
Mode	HMDE
Start potential	-0.7 V
End potential	-1.3 V
Sweep rate	13 mV/s
Peak potential iodide	-1.05 V

ELECTRODES


- Multi-Mode Electrode pro

RESULTS

The chlor-alkali brine solution contains a high concentration of chloride ions that can interfere with the direct measurement of iodide. By converting iodide to iodate, these interferences are minimized. The determined iodate concentration is then recalculated as iodide concentration as indicated in Table 2.

The method is suitable for the determination of low concentrations of iodide in sodium chloride brine $(\beta(NaCl) = 300 \text{ g/L})$ samples.

Figure 2. Determination of iodate in sodium chloride brine with stripping voltammetry.

Table 2. Result

Sample	lodate (μg/L)
Sodium chloride brine	72.86

Table 2. Result

Sample	lodate (μg/L)
Sodium chloride brine	72.86
Sample	ladida (ua/l.)
Sample	lodide (μg/L)

CONTACT

メトロームジャパン株式会 社 143-0006 東京都大田区平 和島6-1-1 null 東京流通センター アネックス9階

metrohm.jp@metrohm.jp

CONFIGURATION

(MME) 884 Professional VA manual

マルチモート電極 (MME) のための 884 Professional VA manual は、マルチモート電極 pro、scTRACE Gold または滴下ヒスマス電極を使 用したホルタンメトリーおよひホーラロクラフィーによるハイエント微量分析へのエントリーレヘル装置です。高性能のホテンショスタット/カルハノスタットと、非常に柔軟な viva ソフトウェアとのコンヒネーションにおける熟練した Metrohm の電極技術か重金属の測定に新たな展望を開きます。性能か認証されたキャリフレータの付いたホテンショスタットは、各測定前に自動的に新たに調整を行い、可能な限り高い精度を保証します。

この装置と組み合わせることで、例えはCVS (サイクリックホルタンメトリーストリッヒンク)、CPVS (サイクリックハルスホルタンメトリーストリッヒンク)、CP (クロノホテンショメトリー) による電気めっき浴内の有機添加物の測定なと、回転ティスク電極による測定を実施することも可能となります。交換可能な測定へットにより、異なる電極を持つ様々なアフリケーション間の迅速な交換か可能となります。

コントロール、テータ処理およひ評価のためにソフトウェア viva か必要となります。

884 Professional VA manual MME仕様は、多数の付属品およひマルチモート電極 pro のための測定へットを付属して納品されます。電極セットおよひ viva ライセンスは別途こ注文くたさい。

