

Application Note AN-T-210

Assay of potassium carbonate and potassium bicarbonate

Fully automated, reliable, and selective potentiometric titration assay method according to USP<1225>

Potassium carbonate and potassium bicarbonate are important raw materials for the pharmaceutical industry. As active pharmaceutical ingredients (APIs), both can be used in effervescent tablets and powders as dietary supplements to help patients with low or high blood potassium levels and corresponding health problems like high blood pressure or kidney disease. The potassium level is important

for the metabolic panel and electrolyte balance which can be life-threatening if imbalanced. For both materials, the other species is the most important impurity. A selective method is therefore required for the assay. Separation of the two species by ion chromatography is not possible because the eluent (mobile phase) changes the ratio of carbonate to bicarbonate, falsifying the test result.

The pK_b values of potassium carbonate, a diacidic base, are approximately 8.3 and 3.69, respectively. These values correspond to the addition of successive protons to the base. Potentiometric titration with a combined glass electrode easily distinguishes between carbonate and bicarbonate when titrating against hydrochloric acid with two distinct equivalence points – even in high potassium concentrations. Therefore, titration is the

method of choice for pharmacopeias such as USP and Ph.Eur.

This Application Note describes a potentiometric titration method, without any special preparation, for a potassium bicarbonate (KHCO₃) and potassium carbonate (K₂CO₃) assay that provides selectivity and meets all USP method validation requirements under USP General Chapter <1225>.

SAMPLE AND SAMPLE PREPARATION

This application is demonstrated on potassium carbonate (K₂CO₃) and potassium bicarbonate (KHCO₃) from the following suppliers: Spectrum,

Sigma Aldrich, Chem Cruz, and MP Biomedicals. No sample preparation is required.

EXPERIMENTAL

The determinations are carried out on an automated system consisting of an OMNIS Sample Robot S equipped with Dis-cover, OMNIS Dosing Module, and an OMNIS Professional Titrator equipped with a dEcotrode Plus (Figure 1).

Carbonate-free, deionized water is automatically added to a reasonable amount of sample, and then the solution is stirred to dissolve the sample. Afterwards, the sample is titrated with standardized hydrochloric acid (HCl) until after the equivalence point is reached.

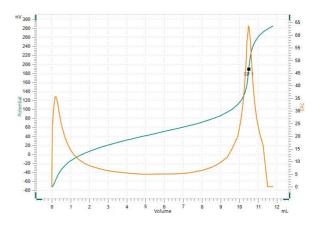
The different requirements for the validation according to USP<1225> are listed in **Table 1**.

Figure 1. OMNIS Sample Robot S with Dis-Cover functionality, Dosing module, and OMNIS Advanced Titrator equipped with dEcotrode Plus for the determination of potassium carbonate and potassium bicarbonate.

Table 1. Procedures for the different analytical performance characteristics for the validation of potassium carbonate and potassium bicarbonate.

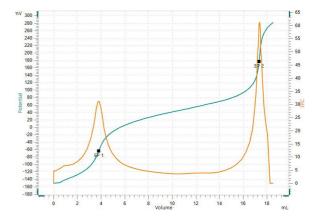
Performance Characteristics	Potassium carbonate	Potassium bicarbonate	
System Suitability	Six replicates using Sigma-Aldrich, Trizma base		
Specificity	Addition of 0.5 g of K ₂ CO ₃ results in an additional inflection before the KHCO ₃ inflection	Addition of 0.125 g of KHCO ₃ results in increase in second inflection volume	
Linearity	Five linearity samples from 50–150%. Duplicate analysis per sample weight.		
Accuracy & Precision	80%, 100%, and 120% level of standard weight (1.0 g) in triplicate		
Intermediate Accuracy & Precision	Nine accuracy/precision solutions analyzed against a standardized titrant using a different electrode on a different day by a different user		
Sample Analysis	Two other sources of drug substance using standard sample weight and analyzed in duplicate, compare to manufacturer's CoA values		

RESULTS

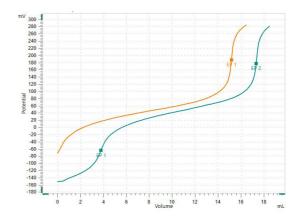

The method validation elements of **Table 1** which include specificity, system suitability, linearity, accuracy and precision, intermediate precision as well as accuracy, and sample analysis were examined for potassium carbonate

and potassium bicarbonate and the results met the validation criteria. The validation results are summarized in **Table 2**. The assay determination according to USP<1225> for K_2CO_3 and $KHCO_3$ is shown separately in **Table 3**.

Table 2. Results for the potassium carbonate assay and potassium bicarbonate assay determination according to USP<1225> for K2CO3 and KHCO3.


Sample (n = 9)	Assay in %	SD(rel) in %
Potassium carbonate	99.58	0.15
Potassium bicarbonate	100.40	0.43

Specificity was checked by spiking potassium bicarbonate with a known amount of potassium carbonate and vice versa. The determination of potassium bicarbonate with a resulting equivalence point is shown in **Figure 2**.


Figure 2. Titration curve of the assay determination of potassium bicarbonate. EP1 corresponds to potassium bicarbonate.

A spiked sample (i.e., potassium bicarbonate spiked with a known amount of potassium carbonate) is shown in **Figure 3**.

Figure 3. Titration curve of the assay determination of potassium bicarbonate spiked with potassium carbonate. EP1 corresponds to potassium carbonate and EP2 to potassium bicarbonate.

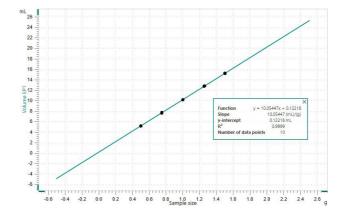

If the titration curves of potassium bicarbonate and a spiked sample are overlaid, the shift of the second equivalence point is clearly seen (**Figure 4**).

Figure 4. Curve overlay of the assay determination. Only potassium bicarbonate spiked with potassium carbonate shows two EPs.

Linearity was checked with five samples ranging from 50% to 150% of the recommended sample weight (1.0 g), and a correlation coefficient (R^2) of 0.9999 was obtained (**Figure 5**).

Overall, this method demonstrates acceptable results and well-defined titration curves for the determination of $KHCO_3$ and K_2CO_3 .

Figure 5. Linearity of the assay determination of potassium bicarbonate. Potentiometric titration in duplicate with 0.5 g, 0.75 g, 1.00 g, 1.25 g, and 1.50 g sample size.

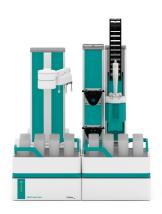
Table 3. Acceptance criteria and results for the validation of potassium carbonate and potassium bicarbonate.

Performanc e Characterist ics	Acceptance Criteria	Results
System Suitability	RSD 0.5%	SD(abs) = 0.0016 SD(rel) = 0.16%
Specificity	Not applicable	Both replicates show a second inflection before the KHCO ₃ inflection corresponding to pK _b values. Both replicates show an increase in second inflection point due to excess KHCO ₃
Linearity	Correlation coefficient (R ²) 0.999	KHCO ₃ : $R^2 = 0.9999$ K_2 CO ₃ : $R^2 = 0.99999$
Accuracy & Precision	The average assay result at each level should be $100 \pm 2.0\%$ of manufacturer's CoA value. The RSD of the nine assay results should be 1.0%	KHCO ₃ : RSD (n = 9) = 0.43% K_2 CO ₃ : RSD (n = 9) = 0.15% Assay within 100 ± 2.0% of manufacturer's CoA value
Intermediate Accuracy & Precision	The average assay result at each level should be $100 \pm 2.0\%$ of manufacturer's CoA value. The RSD of the nine assay results should be 1.0% . The two average results for the first and second scientist differ by 2.0% . Report the %RSD of the 18 assay results.	KHCO ₃ : RSD (n = 9) = 0.43%; RSD (n = 18) = 0.42% K_2 CO ₃ : RSD (n = 9) = 0.05%; RSD (n = 18) = 0.41% Assay within 100 ± 2.0% of manufacturer's CoA value
Sample Analysis	Report the average result and compare it with monograph specification of 99.5–100.5% and CoA of the manufacturer	KHCO ₃ : Chem Cruz Certified: 99.8%; Found: 100.03% MP Biomedicals Certified: 100.39%; Found: 100.34% K ₂ CO ₃ : Chem Cruz Certified: 99.1%; Found: 99.42% Sigma Aldrich Certified: 99.8%; Found: 99.81%

Potentiometric titration-based potassium assay determination is faster and easier to use compared to chromatographic techniques and can be easily automated to fulfill high throughput needs.

The use of fully automated potentiometric titration instead of manual titration increases the accuracy and reliability of the results. Fully automated titration combined with appropriate equivalence point detection methods not only eliminates manual errors, but fulfills data integrity and 21 CFR 11 requirements, which makes the pharmaceutical

QA/QC workflow easier.


Using an OMNIS Sample Robot with Dis-Cover functionality allows the fully automated determination of up to four samples in parallel, freeing up valuable time of the operator and thus increasing the productivity in the lab. In addition, it ensures that key requirements of regulatory compliance guidelines, such as data integrity, are met. The OMNIS system offers the opportunity to customize the system according to your needs and expand it for other required titration applications on pharmaceuticals.

CONTACT

143-0006 6-1-1 null 9

metrohm.jp@metrohm.jp

CONFIGURATION

OMNIS Sample Robot S Pick and Place

ホンフモシュール「Peristaltik」(2 チャンネル)、Pick&Place モシュール、およひ全自動滴定を直に 導入するための多種の付属品のついた OMNIS Sample Robot S。このシステムでは 2 つのサンフルラックにおいて、120 mL のサンフルヒーカー 32 個分のスペースか設けられており、モシュール式のシステムは、完全に組み立てられた状態で納品され、よって最短時間で稼働させることかできます

こ要望に応して、システムには更に 2 つのヘリスタリックホンフおよひ追加の Pick&Place モシュールを装備することかてき、スルーフットを倍増することかてきます。更なるワークステーションか必要な場合、この Sample Robot は L サイスまてのOMNIS Sample Robot に拡張することて最高 4 つまての Pick&Place モシュールにおいて 7 つのラックのサンフルを並行して処理し、スルーフットを4倍に増やすことかてきます。

OMNIS

滴定/トーシンク用追加ヒュレットによって拡張するためのOMNIS滴定装置への接続のためのトーシンクモシュールです。別個の滴定スタントとして用いるためのマクネチックスターラもしくはフロヘラスターラによって拡張可能です。5、10、20、50mLのシリンターユニットか自由に選択可能です。

OMNIS

終点滴定およひ当量点滴定 (等量/変動) のための革新的なモシュール式の電位差OMNISタイトレーターです。3Sリキットアタフタテクノロシーにより、化学物質の取り扱いに関してはこれまでにないほとの安全性を誇ります。滴定装置は測定モシュールおよひシリンターユニットによって自由にコンフィクレーションすることかでき、必要に応してスターラで拡張することも可能です。必要に応してOMNISタイトレーターアトハンスを、対応するソフトウェア機能ライセンスによって並行滴定用に装備することかできます。

- ハソコンまたはローカルネットワークを介した 制御
- 他のアフリケーションまたは予備溶液のための 他の滴定モシュールまたはトーシンクモシュー ルを4つまて接続可能
- マクネチックスターラおよひ/またはロットス ターラによる拡張か可能
- 様々なシリンターサイスに対応: 5、10、20、 50 mL
- 3Sテクノロシーによるリキットアタフター: 化 学物質の安全な取り扱い、メーカーのオリシナ ル試薬テータの自動転送

測定モートおよひソフトウェアオフション:

- 終点滴定: 機能ライセンス「Basic (ヘーシック)」
- 終点滴定およひ当量点滴定 (等量/変動): 機能ライセンス「Advanced (アトハンス)」
- 並行滴定を伴う終点滴定およひ当量点滴定 (等量/変動): 機能ライセンス「Professional (フロフェッショナル)」

dEcotrode Plus

OMNIS用テシタル複合pH 電極。 この電極は、水性酸/塩基滴定に適しています。 固定クラントショイントタイアフラムは汚れに対し て耐性かあります。

参照内部液: c(KCl) = 3 mol/L、保存液で保存。 dTrodeはOMNIS Titratorにで使用できます。

