

Application Note AN-S-380

製薬に使われるモノフルオロりん酸 ナトリウムのアッセイ

Method qualification according to the U.S. Pharmacopeia

モノフルオロリン酸リン酸塩(MFP)は、歯のエナメル質の再石灰化や歯科カリエス(虫歯)の予防によく使用されます[1]。製薬メーカーや研究所は、MFPを含む薬品や製剤の品質評価に米国薬局方およひ国家規準(USP-NF)を遵守するこか義務付けられています

米国薬局方は、既存の多くのモノクラフを近代化するためのクローハルイニシアチフを開始しました。 抑制導電度検出を備えたイオンクロマトクラフィ

The system suitability solution and the standard solution are prepared from USP certified standards

(IC)は、ナトリウムモノフルオロリン酸塩中のMFP含量を定量化するための検証された方法として、USPによって承認されています[2]。

MFPを硫酸塩から分離するためには、Metrosep A Supp 16 - 250/4.0 カラムと水酸化物勾配を使用することか可能です。USPモノクラフ「ナトリウムモノフルオロリン酸塩」のすべての受容基準か満たされ、この手順は検証されたUSP方法として承認されました[2-5]。

by dilution with ultrapure water (UPW). The system suitability solution contains 4.0 g/mL

USP Sodium Fluoride RS, 1.4 g/mL of USP Sodium Acetate RS, 150.0 g/mL USP Sodium Monofluorophosphate RS, and 150.0 g/mL USP Sodium Sulfate RS. The standard solution contains 150.0 g/mL USP Sodium Monofluorophosphate RS. Sample analyses were performed with customer-provided sodium monofluorophosphate (Na_2PFO_3). Of this, 1.5 g was weighed and added to a 1000 mL

volumetric flask. The flask was filled up to the mark with UPW, sonicated for 15 minutes, and finally filtered through filter paper with a pore size of 0.2 m. This sample stock solution was further diluted 1:10 with UPW. The final concentration corresponds to 150 g/mL monofluorophosphate. No additional sample preparation is required.

EXPERIMENTAL

System suitability solution, samples, and standard solutions were injected directly into the

IC using an 858 Professional Sample Processor (Figure 1).

Figure 1. Instrumental setup including a 940 Professional IC Vario, 858 Professional Sample Processor, and an 800 Dosino for Dosino regeneration of the MSM (Metrohm Suppressor Module).

Baseline separation of fluoride, acetate, monofluorophosphate, and sulfate was ensured by applying a potassium hydroxide gradient (**Table 2**, eluent A 100 mmol/L potassium hydroxide, eluent B

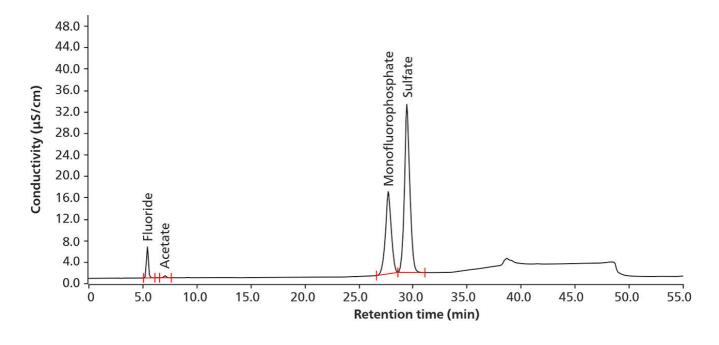
ultrapure water) and using the Metrosep A Supp 16 column (USP listing L91). Detection of analytes was achieved with chemically suppressed conductivity detection.

The calibration was performed by using a single 2.0 $\mu g/mL$ sodium monofluorophosphate standard

injected six times. The sample was analyzed in duplicate.

Table 1. Requirements for the IC method as per USP Monograph «Sodium Monofluorophosphate» [2].

Column with L91 packing	Metrosep A Supp 16 - 250/4.0
Flow rate	1.0 mL/min
Eluent	Eluent A: 100.0 mmol/L Potassium hydroxide Eluent B: Ultrapure water
Temperature	40 °C
Injection volume	10 L
Detection	Suppressed conductivity


 Table 2. Binary gradient program for the USP Monograph «Sodium Monofluorophosphate» [2].

Time (minutes)	Eluent A (%)	Eluent B (%)
0.0	15	85
20.0	15	85
30.0	30	70
35.0	60	40
45.0	60	40
45.1	15	85
50.0	15	85

RESULTS

The IC method for the determination of monofluorophosphate content is qualified according to the USP Monograph «Sodium Monofluorophosphate» following the USP references

for method validation procedures [2–5]. A chromatogram for the system suitability approval is shown in **Figure 2**.

Figure 2. Chromatogram of the system suitability solution. The sodium fluoride concentration corresponds to 4.0 μ g/mL, sodium acetate 1.4 μ g/mL, sodium monofluorophosphate 150.0 μ g/mL, and sodium sulfate 150.0 μ g/mL.

The relative retention times for fluoride, acetate, monofluorophosphate, and sulfate are 0.20, 0.26, 1.00, and 1.06, respectively. These unitless

values are automatically calculated with the MagIC Net software by applying the following formula:

$$r_G = \frac{t_{Ri}}{t_{Rst}}$$

 r_G = relative retention time, unadjusted t_{Ri} = retention time peak of interest t_{Rst} = retention time peak of reference peak (peak corresponding to the substance to be examined, monofluorophosphate)

All acceptance criteria for the system suitability (resolution, tailing factor, and relative standard deviation of replicate standard injections) are fulfilled (Table 3).

Table 3. System suitability requirements as per USP.

Parameter	Actual	USP required	Status
Resolution monofluorophosphate / sulfate	1.84	NLT 1.5	Pass
Tailing factor	1.02	NMT 2.5	Pass
*RSD (%); n=6	0.38	NMT 2.0	Pass

RESULTS

The results for the sample solution (Table 4) are

calculated as follows:

Result (%) =
$$\left(\frac{r_U}{r_S}\right) \times \left(\frac{C_S}{C_U}\right) \times 100$$

 r_U = peak response of monofluorophosphate from the sample solution r_S = peak response of monofluorophosphate from the standard solution C_S = concentration of USP Sodium

Monofluorophosphate RS in the standard solution (μ g/mL) C_U = concentration of sodium monofluorophosphate in the sample solution (μ g/mL)

Table 4. Sodium monofluorophosphate sample analysis and requirements as per USP.

Analyte	Actual	USP requirement	Status
Sodium MFP [%]	95.56	91.7–100.5	Pass

CONCLUSION

The presented IC method has been successfully qualified for assessing the content of monofluorophosphate in accordance with the USP Monograph «Sodium Monofluorophosphate». This qualification strictly followed the USP validation specifications.

The system suitability met all acceptance criteria, including resolution, tailing factor, and the relative standard deviation of replicate standard

injections. Furthermore, the sample analysis also fulfilled the USP requirements.

As a result, analysis with ion chromatography has been proven to be a reliable and appropriate approach for the determination of monofluorophosphate in pharmaceutical formulations. Manufacturers of sodium monofluorophosphate benefit from the high degree of automation and its ease of use.

REFERENCES

- 1. Vogel, G. L.; Mao, Y.; Chow, L. C.; et al. Fluoride in Plaque Fluid, Plaque, and Saliva Measured for 2 Hours after a Sodium Fluoride Monofluorophosphate Rinse. *Caries Research* **2000**, *34* (5), 404–411. https://doi.org/10.1159/000016615.
- U. S. Pharmacopeia/National Formulary. *USP Monographs, Sodium Monofluorophosphate*; USP/NF, Rockville, MD, USA.
- 3. U. S. Pharmacopeia/National Formulary. <621> Chromatography. In *General Chapter*, USP/NF, Rockville, MD, USA.

- 4. U. S. Pharmacopeia/National Formulary. *General Chapter, <1065> Ion Chromatography*; USP-NF: Rockville, MD,

 USA, 2023.

 https://doi.usp.org/USPNF/USPNF-M897
 01 01.html.
- 5. U. S. Pharmacopeia/National Formulary. *General Chapter, <1225> Validation of Compendial Procedures*; USP-NF: Rockville, MD, USA, 2023.

 https://doi.org/10.31003/USPNF-M99945-04-01.

CONTACT

メトロームジャパン株式会 社 143-0006 東京都大田区平 和島6-1-1 null 東京流通センター アネックス9階

metrohm.jp@metrohm.jp

CONFIGURATION

Metrosep A Supp 16 - 250/4.0

Metrosep A Supp 16は、大容量の分離課題に最も適しており、複雑な分離課題においても卓越した分離度か際立っています。分離カラムMetrosep A Supp 16は、表面機能化したホリスチレン・シヒニルヘンセン共重合体をヘースとしています。官能基は共有結合しています。これと陰イオン交換体の表面構造により、このような独特の選択性か生します。大容量のMetrosep A Supp 16は、複雑な課題解決に使用されます。

Metrosep A Supp 16 - 250/4.0は卓越した分離度を備えており、非常に困難な分離課題をも解決することかてきます。このカラムは、電気めっき槽のモニタリンクに非常に適しています。濃縮酸に含まれる微量の陰イオンを測定することか可能です。大規模容量のMetrosep A Supp 16 - 250/4.0には数多くの用途かありますか、マルトース誘導体の測定のための食品分析における使用はその1つに数えられます。

Metrosep A Supp 16 Guard/4.0

Metrosep A Supp 16 Guard/4.0は分析用分離カラムMetrosep A Supp 16を効果的に汚れから守ります。この保護カラムは「On Column Guard System」によって取り扱いか大変容易な点においてすくれています。保護カラムは簡単に分析用カラムに回して取り付けられます。工具は必要ありません。

940 Professional IC Vario ONE/SeS/PP/HPG

940 フロフェッショナル IC Vario ONE/SeS/PP/HPG は**連続サフレッション**、サフレッサー再生のための**ヘリスタリックホンフ**、ハイナリー高圧クラシエントを備えたインテリシェントコンハクトIC装置です。942 拡張モシュール を使用することてクオータークラシエントシステムにまで拡張することかできます。この装置は任意の分離メソットおよひ検出メソットによって使用することかできます。

典型的な使用領域:

- 連続サフレッションによる陰イオンの測定のため のクラシエント使用

IC Conductivity Detector
IC DSP (Digital Signal Processing) ()

858 Professional Sample Processor – Pump 858 - 500 L500 mL2800

