

Application Note AN-RS-044

Optimize raw material identification and verification (RMID) with MIRA P

Validation model transfer increases productivity

Using a verification model on multiple instruments expands a manufacturer's raw material identification/verification (RMID) capabilities by speeding up incoming inspection, imparting flexibility to an operation, or avoiding downtime.

In a scenario where several operators use multiple MIRA P systems at different locations, the ability of any operator to use any MIRA P to validate a new shipment streamlines operations and allows that shipment to be quickly released to production. In most cases, a well-designed model with inherent sample variability can be built on one MIRA P and transferred to another. In some cases, variance must be added to a training set with a few additional samples. This Application Note describes how a model transfers from one MIRA P to another in order to scale MIRA P usage across an entire operation.

Model building (including training and validation set samples, operating procedure (OP) settings, and necessary variance) has already been well-established for RMID with a unique MIRA P [1,2].

In summary, MIRA Cal P generates PCA-based (principal component analysis) models using Training Set data and Operating Set parameters to verify target substances. Ideally, a model can be created on one instrument («MIRA P 1»), downloaded onto a second

instrument («MIRA P 2»), then validated on the second unit and used directly.

The model must be expanded if the initial transfer does not produce satisfactory p-values or does not pass validation. This involves introducing variance in the model and/or optimizing model parameters and/or ensuring consistent usage by each operator of the instrument

MODEL TRANSFER

This Application Note details the:

- 1. transfer of a material verification model from one MIRA P to another MIRA P
- 2. validation of the success of the model transfer
- 3. expansion of the model using a transfer matrix, if necessary

Contact your local Metrohm Sales and/or Service Representative for the full MIRA P to MIRA P Transfer Protocol.

Parameter optimization and/or inclusio

n of additional data that includes instrument variance and variance based on historical and current samples are both simple ways to expand a model.

Using an established model, new validation data is collected from both MIRA P units and added to the Training Set. Parameter optimization is recommended at this step. After this updated model is uploaded to the new MIRA P unit, it must be validated on the new unit.

VALIDATION

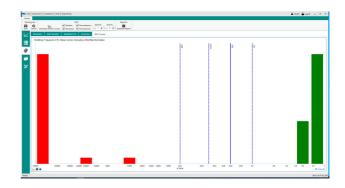
Validation of a model demonstrates that the model adequately assesses a material on a new instrument. In other words, validation data serves as a «diagnosis» of how the model performs on the new unit.

Validation is an assessment of a method using test samples:

 that are expected to PASS (positive samples).
 These are samples of the target material but are different than the samples used to build the Training Set. that are expected to FAIL (negative samples).
 These can either be dissimilar materials or similar yet different materials. This ensures the specificity of a model.

It is a simple task, requiring just a few minutes, to run a validation set. This will inform successive steps.

HOW MANY OPTIMIZATIONS ARE NEEDED?


A good way to assess the success of a transferred model is to look at p-value distributions of positive and negative Validation Set samples. This is a good measure of a model's **robustness**—its ability to

correctly assess new data, not just the data it was trained on. For example, **Figure 1** contains Validation Set results for sodium bicarbonate on the receiving MIRA P device (MIRA P 2).

Initial Validation results for sodium bicarbonate show all the characteristics of good validation results (Figure 1a).

Red bars indicate that negative validation samples are failing appropriately, and positive samples are also passing with high p-values.

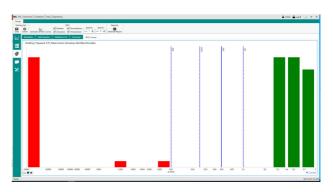
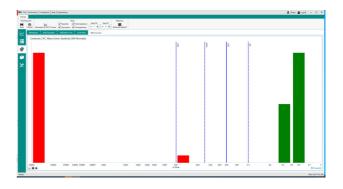


Figure 1a. Validation results for sodium bicarbonate on MIRA P: the original model.

HOW MANY OPTIMIZATIONS ARE NEEDED?


After transfer to MIRA P 2 (**Figure 1b**), p-values for negative and positive samples show greater variance, but all are passing/failing appropriately.

Ultimately, this is a good example of a model that was transferred and used immediately.

Figure 1b. Validation results for sodium bicarbonate on MIRA P: the model after transfer to another unit.

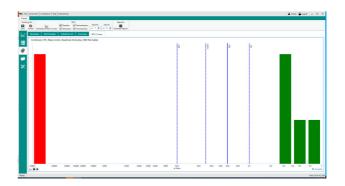
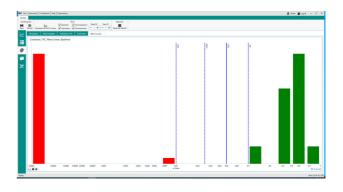

Lactose fluoresces with 785 nm Raman, but a well-built model can accommodate such fluorescence. This is a good test of the model transfer capability. The lactose model transfers easily, requiring only parameter optimization in MIRA Cal P and addition of a small number of scans from the new instrument to the training set (Figure 2).

Figure 2a. Validation results for lactose on MIRA P: the original model


P-values exhibited slightly more variance on the new instrument (Figure 2b), but the model was robust.

Figure 2b. Validation results for lactose on MIRA P: the model after transfer and parameter optimization.

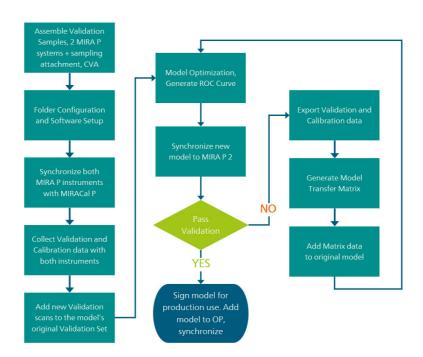

Microcrystalline cellulose (MCC) is a challenging sample for 785 nm Raman, as it is very fluorescent. This can be seen in the wider distribution of validation set p-values in the original model (**Figure 3a**).

Thus, it was not expected for the original model to transfer without the Transfer Matrix.

Figure 3a. Validation results for microcrystalline cellulose (MCC) on MIRA P: the original model

Ultimately, the optimization of parameters and utilization of the Transfer Matrix provided a robust model that could be used on a second MIRA P instrument and with a smaller spread of p-values.

Figure 3b. Validation results for microcrystalline cellulose (MCC) on MIRA P: the model after parameter optimization and Transfer Matrix.


Compliance with 21 CFR Part 11 requires document control at the highest level. Specifically, all model metadata is preserved, ensuring traceability after model transfer. The manufacturer-supported means

for this are simple: MIRA P Model Transfer Protocol includes a sign-off sheet to record and track data from MIRA Cal P export, through the transfer matrix, and import back into MIRA Cal P.

CONCLUSION

The benefits of using multiple MIRA P devices for raw material verification include smoother operations and faster turnaround of products. This Application Note is intended to guide users through model transfer and enable the deployment of multiple MIRA P instruments.

From tips for the simplest transfer to tools for more challenging tasks, we want you to be confident in taking your inspection with MIRA P to the next level. This flowchart is a quick reference for the basic flow of operations during MIRA P to MIRA P transfer.

REFERENCES

- Metrohm AG. Simplified RMID Model Building Mira Cal P and ModelExpert; <u>AN-RS-031</u>; Metrohm AG: Herisau, Switzerland, 2021.
- Gelwicks, M. J. Real World Raman: Simplifying Incoming Raw Material Inspection. Analyze This

 The Metrohm Blog.

CONTACT

Metrohm France
13, avenue du Québec - CS
90038
91978 VILLEBON
COURTABOEUF CEDEX

info@metrohm.fr

CONFIGURATION

MIRA P Basic

Le Metrohm Instant Raman Analyzer (MIRA) P est un spectromètre Raman performant et portable destiné à la détermination et la vérification rapides et non destructives de différents types de matériaux, comme les principes actifs et excipients pharmaceutiques. De très petite taille, le Mira P se caractérise pourtant par un design robuste et dispose d'un spectrographe de haute efficacité, équipé de notre technologie « Orbital Raster Scan » (ORS) unique. Le Mira P est parfaitement conforme aux directives de la FDA 21 CFR Part 11.

Le module de base Mira P permet à l'utilisateur d'adapter le Mira P à ses besoins. Le module de base Mira est un module de démarrage qui contient les composants de base nécessaires au fonctionnement du Mira P.

Le module de base contient les accessoires de calibrage/vérification Mira, la bibliothèque USP et la lentille LWD (pour longue distance) destinée aux analyses en flacons ou sachets. Fonctionnement de classe de protection laser 3B.

MIRA P Advanced

Le Metrohm Instant Raman Analyzer (MIRA) P est un spectromètre Raman portable performant qui s'utilise pour les déterminations rapides et non destructives et le contrôle des matériaux les plus divers, comme les principes actifs pharmaceutiques et les excipients. De très petite taille, le MIRA P est pourtant très robuste et dispose d'une structure de spectrographe haute efficacité, équipée de notre technologie « Orbital Raster Scan » (ORS) inédite. MIRA P satisfait aux prescriptions FDA 21 CFR partie 11.

Le Advanced Package comprend une lentille avec laquelle les matériaux peuvent être analysés directement ou dans leur conditionnement (classe de laser 3b), ainsi qu'un support de flacon pour analyser les échantillons dans des flacons en verre (classe de laser 1).

MIRA P Flex

Le MIRA P Flex Package permet à l'utilisateur d'adapter le MIRA P à ses besoins. Le Flex Package comprend tous les composants de base destinés au fonctionnement du MIRA P, sauf les embouts de prélèvement d'échantillons. Un embout de prélèvement d'échantillons est au minimum nécessaire à son fonctionnement. Le MIRA P Flex Package contient la bibliothèque USP, des accessoires de calibrage/vérification et un câble USB. Fonctionnement avec des lasers de classe 3B.

