

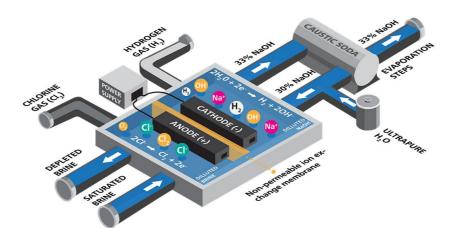
Application Note AN-PAN-1046

Online determination of anionic impurities in 50% NaOH and KOH

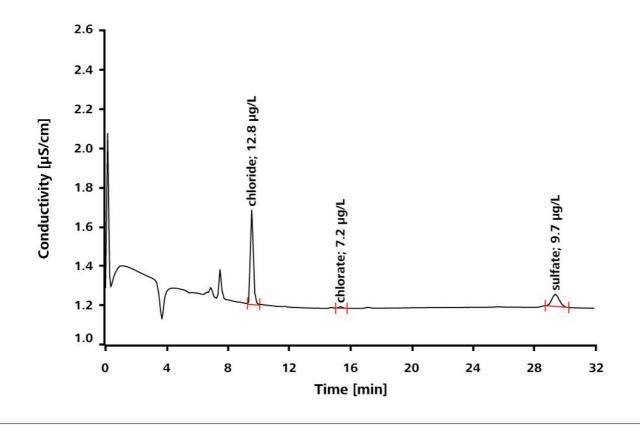
Process ion chromatography according to ASTM E1787

The basic chemicals industry is responsible for producing thousands of raw materials at very large scales. The industries downstream rely upon a certain level of chemical purity to manufacture their own goods, as certain impurities can cause major issues in various processes. During the production of the basic chemicals sodium and potassium hydroxide (NaOH and KOH), electrolysis with membrane cells of saturated brine solutions yields the product which is further concentrated by evaporation. Impurities from the salts used in the brine will also be concentrated. Typically, this impurity analysis is performed offline using various hazardous chemicals with varying shelflives.

This Process Application Note is focused on monitoring anionic impurities in caustic soda and caustic potash. The **2060 IC Process Analyzer** is the perfect solution to perform the measurement described in ASTM E1787 online, ensuring quality product without the need for time-consuming, hazardous laboratory experiments.



INTRODUCTION


The production of caustic soda (sodium hydroxide, lye, NaOH) and caustic potash (potassium hydroxide, KOH) is extremely significant, as these are mainly used as precursors for many other chemicals used in all industries. For example, the pulp and paper industry is especially reliant on concentrated caustic soda for chemical pulping of wood in the Kraft process, and the agrochemical industry is heavily reliant on KOH.

Caustic soda and caustic potash are produced alongside chlorine in the chlor-alkali process, which is explained in more detail in <u>AN-PAN-1005</u>. In this process, chlorine and caustic soda (or potash) are produced via electrolysis of sodium chloride (or potassium chloride) brine, mainly with the membrane-cell technique [1]. Some production plants make both NaOH and KOH in the same cell room, though generally the brine circuits are kept separate to avoid time-consuming cleaning and purging processes between the different brines. In both situations, the caustic product is concentrated to about 50 wt-% by two- or three-step evaporations before it is stored. This concentrated product contains impurities from the salts used which are undesirable in certain chemical purity grades needed for the subsequent production processes.

Typically, anionic impurities in 50 wt-% caustic soda or potash are determined by gravimetric or titration methods which require a variety of reagents with diverse shelf lives and hazards. In 2016, the **ASTM method E1787** was released, specifying ion chromatography (IC) to measure bromide (Br⁻), chlorate (ClO_3^{-}), chloride (Cl^{-}), fluoride (F^{-}), nitrate (NO_3^{-}), phosphate (PO_4^{-3-}), and sulfate (SO_4^{-2-}) in concentrated NaOH or KOH solutions. Anions of primary interest are **Cl⁻**, **ClO_3⁻**, and **SO_4^{-2-}**, as shown in **Figure 1b**.

Figure 1. (a) Diagram of the membrane cell process used to produce concentrated NaOH and KOH alongside chlorine (source material: http://www.eurochlor.org [1]); (b) 100 µL injection of 50% KOH sample (diluted 1:10), using Metrohm Inline Sample Preparation (MISP) techniques for extra application flexibility.

The **2060 IC Process Analyzer** from Metrohm Process Analytics (**Figure 2**) is ideal for fulfilling ASTM E1787. The analyzer is able to continuously measure and monitor anionic impurities in caustic soda and caustic potash in a robust housing suitable for such a process environment. Metrohm offers many fully automatic inline sample preparation techniques for ion chromatography, making analysis even more handsoff and flexible. Automated calibration guarantees excellent detection limits, high reproducibility, and excellent recovery rates. The caustic stream is sampled frequently, giving upto-date information about the status of the membrane cells. The 2060 IC Process Analyzer can provide an alarm if pre-set warning or intervention concentration limits are reached, helping to save costs by preventing irreparable damage due to membrane fouling and other problems. One 2060 IC Process Analyzer has the possibility to connect to up to 10 sample streams, meaning multiple cells with different end products could be monitored for impurities by a single instrument.

Figure 2. The Metrohm Process Analytics 2060 IC Process Analyzer, along with integrated liquid handling modules and several automated sample preparation options.

The 2060 IC Process Analyzer can run for extended periods in less-frequented areas as there is adequate space reserved for reagents, containers of ultrapure water and/or prepared eluent, and level sensors to alert users when liquid levels are low. By choosing a built-in eluent module and optional PURELAB® flex 5/6 from ELGA® for continuous pressureless ultrapure water supply, the 2060 IC Process Analyzer can be configured to run even trace analyses autonomously.

APPLICATION

Concentrated KOH and NaOH samples can be analyzed according to ASTM E1787, with Metrohm Inline Sample Preparation techniques for extra application flexibility. Analyte detection is by conductivity.

 Table 1. Typical measurement parameters in concentrated caustic solutions * Some of the anionic impurities include bromide, chlorate, chlorate, fluoride, nitrate, phosphate, and sulfate [2].

Parameters	Range [µg/g]
Anionic impurities *	0.1–1000

REMARKS

For sulfate quantification, it is essential to use perchloric acid $(HCIO_4)$ for the inline neutralization. An anion trap (A Trap 1) should be used in line with any ultrapure transfer water to ensure the highest quality results. For high concentrations of chloride, potentiometric titration can be used. Metrohm Process Analytics offers potentiometric titration options for samples above 2 mg/L Cl⁻.

CONCLUSION

The 2060 IC Process Analyzer from Metrohm Process Analytics can continuously measure and monitor anionic impurities in caustic streams according to ASTM E1787. Integrated with liquid handling modules and automated sample preparation, the 2060 IC Process Analyzer makes calibration and validation as simple as pressing a button.

REFERENCES

[1] How Are Chlorine and Caustic Soda Made? *Euro Chlor 17.*

[2] Standard Test Method for Anions in Caustic Soda and Caustic Potash (Sodium Hydroxide and Potassium Hydroxide) by Ion Chromatography <u>https://www.astm.org/e1787-16.html</u> (accessed 2022-04-08).

BENEFITS FOR PROCESS ION CHROMATOGRAPHY

- Increased longevity of valuable company assets
- Monitor **multiple sample streams** (up to 10) for more savings per measurement point and results
- Fully automated diagnostics automatic alarms for when samples are out of specification parameters

CONTACT

Metrohm France 13, avenue du Québec - CS 90038 91978 VILLEBON COURTABOEUF CEDEX

info@metrohm.fr

CONFIGURATION

2060 IC Process Analyzer

L'appareil d'analyse 2060 Ion Chromatograph (IC) Process Analyzer de Metrohm Process Analytics repose sur le concept de la plate-forme modulaire 2060. Cette architecture modulaire permet de séparer les armoires dans différentes zones d'un site et de connecter jusqu'à 20 flux d'échantillons en vue d'une analyse séquentielle à plusieurs endroits d'un site afin de gagner du temps.

Cet appareil d'analyse n'impose aucune restriction concernant le matériel, les logiciels et la personnalisation des applications. Du module de production d'éluant en continu aux modules par voie humide pour le conditionnement des échantillons, en passant par les multiples blocs de détection CI, le 2060 IC Process Analyzer offre toutes les options nécessaires pour toute application industrielle.

Le logiciel 2060 est une solution logicielle « tout-enun » qui controle l'appareil d'analyse afin d'effectuer des analyses de routine selon différentes méthodes de maniement, différentes fiches horaires et différents graphiques de tendance. En outre, les protocoles de communication du processus (par ex. Modbus ou Discrete I/O) étant variés, le logiciel 2060 p e ut etre programmé pour envoyer automatiquement des retours d'information et des alarmes au système chargé de la procédure et pour prendre les mesures nécessaires (par ex., répéter la mesure d'un échantillon ou démarrer un cycle de nettoyage). Toutes ces caractéristiques assurent un diagnostic entièrement automatique de la procédure industrielle, 24 heures sur 24, 7 jours sur 7.

