The column program



The whole world of ion chromatography



# Metrohm – the comprehensive solution



Metrohm has become a synonym for ion chromatography. For more than 35 years, Metrohm has been offering innovative and creative solutions in the area of IC separation columns and IC devices.



# Welcome to the world of ion chromatography



With high-tech, long years of application know-how, Swiss quality standards and a reasonable pricing policy, for procurement as well as for maintenance, Metrohm guarantees the optimum solution in ion chromatography.

Welcome to Metrohm!

# Table of contents

| Separation columns from Metrohm          | 10 | IC anion-separation columns for analyses     |     |
|------------------------------------------|----|----------------------------------------------|-----|
| iColumn                                  | 11 | with chemical suppression                    | 44  |
|                                          |    | Metrosep A Supp 1 - 250/4.6 (6.1005.300)     | 46  |
| Which column for which application?      | 12 | Metrosep A Supp 1 HS - 50/4.6 (6.1005.350)   | 48  |
| Preselection                             | 13 | Metrosep A Supp 3 - 250/4.6 (6.1005.320)     | 50  |
| A) Anions without chemical suppression   | 13 | Metrosep A Supp 5 - 50/4.0 (6.1006.550)      | 52  |
| B) Anions with chemical suppression      | 14 | Metrosep A Supp 5 - 100/4.0 (6.1006.510)     | 54  |
| C) Oxidizable anions                     | 16 | Metrosep A Supp 5 - 150/4.0 (6.1006.520)     | 56  |
| D) Cations without chemical suppression  | 17 | Metrosep A Supp 5 - 250/4.0 (6.1006.530)     | 58  |
| E) Cations with chemical suppression     | 18 | Metrosep A Supp 7 - 150/4.0 (6.1006.620)     | 60  |
| F) Organic acids                         | 18 | Metrosep A Supp 7 - 250/4.0 (6.1006.630)     | 62  |
| G) Carbohydrates                         | 19 | Metrosep A Supp 10 - 50/4.0 (6.1020.050)     | 64  |
| H) Amino acids                           | 19 | Metrosep A Supp 10 - 75/4.0 (6.1020.070)     | 66  |
|                                          |    | Metrosep A Supp 10 - 100/4.0 (6.1020.010)    | 68  |
| Capacity of the separation columns       | 20 | Metrosep A Supp 10 - 250/4.0 (6.1020.030)    | 70  |
| Position of the system peak              | 21 | Metrosep A Supp 16 - 100/4.0 (6.1031.410)    | 72  |
|                                          |    | Metrosep A Supp 16 - 150/4.0 (6.1031.420)    | 74  |
| MCS Metrohm CO <sub>2</sub> Suppressor   | 22 | Metrosep A Supp 16 - 250/4.0 (6.1031.430)    | 76  |
|                                          |    | Metrosep A Supp 17 - 100/4.0 (6.01032.410)   | 78  |
| Flexibility in application thanks to     |    | Metrosep A Supp 17 - 150/4.0 (6.01032.420)   | 80  |
| free selection of the pH value           | 23 | Metrosep A Supp 17 - 250/4.0 (6.01032.430)   | 82  |
|                                          |    | Metrosep A Supp 18 - 150/4.0 (6.01033.420)   | 84  |
| Standards                                | 24 | Metrosep A Supp 18 - 250/4.0 (6.01033.430)   | 86  |
| ABC of practical work                    | 26 | Metrosep A Supp 19 - 100/4.0 (6.01034.410)   | 88  |
|                                          |    | Metrosep A Supp 19 - 150/4.0 (6.01034.420)   | 90  |
| Tips for eluent preparation              | 28 | Metrosep A Supp 19 - 250/4.0 (6.01034.430)   | 92  |
| Inline Eluent Preparation                | 29 | Metrosep A Supp 21 - 150/4.0 (6.01036.420)   | 94  |
|                                          |    | Metrosep A Supp 21 - 250/4.0 (6.01036.430)   | 96  |
| Separation columns                       | 30 |                                              |     |
| IC anion-separation columns for analyses |    | Microbore IC anion-separation columns for lo | wer |
| without chemical suppression             | 30 | eluent consumption and greater sensitivity   | 98  |
| Hamilton PRP-X100 - 125/4.0 (6.1005.000) | 32 | Metrosep A Supp 4 - 250/2.0 (6.01021.230)    | 100 |
| Hamilton PRP-X100 - 250/4.0 (6.1005.010) | 34 | Metrosep A Supp 5 - 150/2.0 (6.1006.220)     | 102 |
| Super-Sep - 100/4.6 (6.1009.000)         | 36 | Metrosep A Supp 5 - 250/2.0 (6.1006.230)     | 104 |
|                                          |    | Metrosep A Supp 7 - 150/2.0 (6.1006.640)     | 106 |
| IC anion-separation columns for analyses |    | Metrosep A Supp 7 - 250/2.0 (6.1006.650)     | 108 |
| with or without chemical suppression     | 38 | Metrosep A Supp 10 - 50/2.0 (6.1020.250)     | 110 |
| Metrosep Dual 4 - 100/4.6 (6.1016.030)   | 40 | Metrosep A Supp 10 - 75/2.0 (6.1020.270)     | 112 |
| Metrosep A Supp 4 - 250/4.0 (6.1006.430) | 42 | Metrosep A Supp 10 - 100/2.0 (6.1020.210)    | 114 |
|                                          |    | Metrosep A Supp 10 - 150/2.0 (6.1020.220)    | 116 |
|                                          |    | Metrosep A Supp 10 - 250/2.0 (6.1020.230)    | 118 |
|                                          |    | Metrosep A Supp 16 - 100/2.0 (6.1031.210)    | 120 |
|                                          |    | Metrosep A Supp 16 - 150/2.0 (6.1031.220)    | 122 |
|                                          |    | Metrosep A Supp 16 - 250/2.0 (6.1031.230)    | 124 |
|                                          |    |                                              |     |

| IC separation columns for the                 |     | Microbore IC cation-separation columns for lo   | wer |
|-----------------------------------------------|-----|-------------------------------------------------|-----|
| determination of organic acids -              |     | eluent consumption and greater sensitivity      | 180 |
| ion-exclusion chromatography                  | 126 | Metrosep C 4 - 100/2.0 (6.1050.210)             | 182 |
| Hamilton PRP-X300 - 250/4.0 (6.1005.030)      | 128 | Metrosep C 4 - 150/2.0 (6.1050.220)             | 184 |
| Metrosep Organic Acids - 100/7.8 (6.1005.210) | 130 | Metrosep C 4 - 250/2.0 (6.1050.230)             | 186 |
| Metrosep Organic Acids - 250/7.8 (6.1005.200) | 132 | Metrosep C 6 - 100/2.0 (6.01051.210)            | 188 |
|                                               |     | Metrosep C 6 - 150/2.0 (6.01051.220)            | 190 |
| C carbohydrate-separation columns - anion-    |     | Metrosep C 6 - 250/2.0 (6.01051.230)            | 192 |
| exchange chromatography applying pulsed       |     |                                                 |     |
| amperometric detection (PAD)                  | 134 | IC cation-separation columns for analyses       |     |
| Metrosep Carb 2 - 100/4.0 (6.1090.410)        | 136 | with chemical suppression                       | 194 |
| Metrosep Carb 2 - 150/4.0 (6.1090.420)        | 138 | Metrosep C Supp 1 - 100/4.0 (6.1052.410)        | 196 |
| Metrosep Carb 2 - 250/4.0 (6.1090.430)        | 140 | Metrosep C Supp 1 - 150/4.0 (6.1052.420)        | 198 |
| Hamilton RCX-30 - 250/4.6 (6.1018.000)        | 142 | Metrosep C Supp 1 - 250/4.0 (6.1052.430)        | 200 |
|                                               |     | Metrosep C Supp 2 - 100/4.0 (6.01053.410)       | 202 |
| Microbore IC carbohydrate-separation colum    | ns  | Metrosep C Supp 2 - 150/4.0 (6.01053.420)       | 204 |
| for lower eluent consumption and greater      |     | Metrosep C Supp 2 - 250/4.0 (6.01053.430)       | 206 |
| sensitivity                                   | 144 |                                                 |     |
| Metrosep Carb 2 - 100/2.0 (6.01090.210)       | 146 | Separation column for the determination         |     |
| Metrosep Carb 2 - 150/2.0 (6.01090.220)       | 148 | of organic substances                           | 208 |
| Metrosep Carb 2 - 250/2.0 (6.01090.230)       | 150 | MetroSil RP 3 - 150/4.0 (6.01070.420)           | 210 |
| IC amino acid-separation column with          |     | IC guard columns (precolumns)                   | 212 |
| optical detection after post-column reaction  | 152 | IC guard column cartridge for Hamilton PRP-X100 |     |
| Metrosep Amino Acids 1 - 100/4.0 (6.4001.410) | 154 | (6.1005.020)                                    | 214 |
|                                               |     | Super-Sep Guard/4.6 (6.1009.010)                | 215 |
| IC cation-separation columns for analyses     |     | Metrosep Dual 4 Guard Column Kit (6.1016.500)   | 216 |
| without chemical suppression                  | 156 | Metrosep A Supp 1 Guard/4.6 (6.1005.340)        | 217 |
| Nucleosil 5SA - 125/4.0 (6.1007.000)          | 158 | Metrosep A Supp 4 Guard/4.0 (6.01021.500)       | 218 |
| Metrosep C 3 - 100/4.0 (6.1010.410)           | 160 | Metrosep A Supp 4 S-Guard/4.0 (6.01021.510)     | 218 |
| Metrosep C 3 - 150/4.0 (6.1010.420)           | 162 | Metrosep A Supp 4 Guard/2.0 (6.01021.600)       | 219 |
| Metrosep C 3 - 250/4.0 (6.1010.430)           | 164 | Metrosep A Supp 5 Guard/4.0 (6.1006.500)        | 220 |
| Metrosep C 4 - 50/4.0 (6.1050.450)            | 166 | Metrosep A Supp 5 S-Guard/4.0 (6.1006.540)      | 220 |
| Metrosep C 4 - 100/4.0 (6.1050.410)           | 168 | Metrosep A Supp 5 Guard/2.0 (6.1006.600)        | 221 |
| Metrosep C 4 - 150/4.0 (6.1050.420)           | 170 | Metrosep A Supp 5 S-Guard/2.0 (6.1006.610)      | 221 |
| Metrosep C 4 - 250/4.0 (6.1050.430)           | 172 | Metrosep A Supp 10 Guard/4.0 (6.1020.500)       | 222 |
| Metrosep C 6 - 100/4.0 (6.1051.410)           | 174 | Metrosep A Supp 10 S-Guard/4.0 (6.1020.510)     | 222 |
| Metrosep C 6 - 150/4.0 (6.1051.420)           | 176 | Metrosep A Supp 10 Guard HC/4.0 (6.1020.520)    | 222 |
| Metrosep C 6 - 250/4.0 (6.1051.430)           | 178 | Metrosep A Supp 10 Guard/2.0 (6.1020.600)       | 223 |
|                                               |     | Metrosep A Supp 16 Guard/4.0 (6.1031.500)       | 224 |
|                                               |     | Metrosen A Sunn 16 S-Guard/A 0 (6 1031 510)     | 22/ |

| Metrosep A Supp 16 Guard/2.0 (6.1031.600)        | 225 | IC trap columns                                                      | 252 |
|--------------------------------------------------|-----|----------------------------------------------------------------------|-----|
| Metrosep A Supp 16 S-Guard/2.0 (6.1031.610)      | 225 | Metrosep A Trap 1 - 100/4.0 (6.1014.000)                             | 254 |
| Metrosep A Supp 17 Guard/4.0 (6.01032.500)       | 226 | Metrosep C Trap 1 - 100/4.0 (6.1015.000)                             | 255 |
| Metrosep A Supp 17 S-Guard/4.0 (6.01032.510)     | 226 | Metrosep C Trap 1 - 30/4.0 (6.01015.030)                             | 256 |
| Metrosep A Supp 17 S-Guard - 50/4.0 (6.01032.530 | 226 | Metrosep RP Trap 1 - 50/4.0 (6.1014.100)                             | 257 |
| Metrosep A Supp 18 Guard/4.0 (6.01033.500)       | 227 | Metrosep RP Trap 2 - 100/4.0 (6.1014.150)                            | 258 |
| Metrosep A Supp 19 Guard/4.0 (6.01034.500)       | 228 | Metrosep I Trap 1 - 100/4.0 (6.1014.200)                             | 259 |
| Metrosep A Supp 21 Guard/4.0 (6.01036.500)       | 229 | Metrosep BO <sub>3</sub> Trap 1 - 100/4.0 (6.1015.200)               | 260 |
| Metrosep Organic Acids Guard/4.6 (6.1005.250)    | 230 | Metrosep CO <sub>3</sub> <sup>2-</sup> Trap 1 - 100/4.0 (6.1015.300) | 261 |
| Metrosep Carb 2 Guard/4.0 (6.1090.500)           | 231 |                                                                      |     |
| Metrosep Carb 2 S-Guard/4.0 (6.1090.510)         | 231 | IC sample-preparation cartridges                                     | 262 |
| Metrosep Carb 2 Guard/2.0 (6.01090.600)          | 232 | IC sample-preparation cartridge IC-RP (6.1012.X00)                   | 264 |
| Nucleosil 5SA 2 Guard Cartridge/4.0 (6.1007.110) | 233 | IC sample-preparation cartridge IC-H (6.1012.X10)                    | 264 |
| Metrosep C 3 Guard/4.0 (6.1010.450)              | 234 | IC sample-preparation cartridge IC-Ag (6.1012.X20)                   | 264 |
| Metrosep C 3 S-Guard/4.0 (6.1010.460)            | 234 | IC sample-preparation cartridge IC-OH (6.1012.X30)                   | 265 |
| Metrosep C 4 Guard/4.0 (6.1050.500)              | 235 | IC sample-preparation cartridge IC-Na (6.1012.X40)                   | 265 |
| Metrosep C 4 S-Guard/4.0 (6.1050.510)            | 235 | IC sample-preparation cartridge IC-C18 (6.1012.X50)                  | 265 |
| Metrosep C 4 S-Guard - 50/4.0 (6.1050.530)       | 235 |                                                                      |     |
| Metrosep C 4 Guard/2.0 (6.1050.600)              | 236 | IC accessories parts                                                 | 266 |
| Metrosep C 4 S-Guard/2.0 (6.1050.610)            | 236 | PEEK inline filter (6.2821.120)                                      | 267 |
| Metrosep C 6 Guard/4.0 (6.1051.500)              | 237 | Coupling safety olive with PEEK inline filter                        |     |
| Metrosep C 6 S-Guard/4.0 (6.1051.510)            | 237 | (6.2744.180)                                                         | 267 |
| Metrosep C 6 Guard/2.0 (6.01051.600)             | 238 |                                                                      |     |
| Metrosep C Supp 1 Guard/4.0 (6.1052.500)         | 239 |                                                                      |     |
| Metrosep C Supp 2 Guard/4.0 (6.01053.500)        | 240 |                                                                      |     |
| Metrosep RP 2 Guard/3.5 (6.1011.030)             | 241 |                                                                      |     |
| Metrosep RP 3 Guard HC/4.0 (6.1011.040)          | 242 |                                                                      |     |
| MetroSil RP 3 Guard/4.0 (6.01070.500)            | 243 |                                                                      |     |
| Metrosep BP 1 Guard/2.0 (6.1015.100)             | 244 |                                                                      |     |
|                                                  |     |                                                                      |     |
| Preconcentration columns                         | 246 |                                                                      |     |
| Metrosep A PCC 2/4.0 (6.1006.330)                | 248 |                                                                      |     |
| Metrosep A PCC 2 HC/4.0 (6.1006.340)             | 248 |                                                                      |     |
| Metrosep A PCC 2 VHC/4.0 (6.1006.350)            | 248 |                                                                      |     |
| Metrosep C PCC 1/4.0 (6.1010.300)                | 249 |                                                                      |     |
| Metrosep C PCC 1 HC/4.0 (6.1010.310)             | 249 |                                                                      |     |
| Metrosep C PCC 1 VHC/4.0 (6.1010.320)            | 249 |                                                                      |     |
| Metrosep Chel PCC 1 VHC/4.0 (6.01010.350)        | 250 |                                                                      |     |

## Separation columns from Metrohm

Separation columns from Metrohm are the backbone of high-performance analytics in ion chromatography. The combination of Metrohm IC separation columns and Metrohm IC systems guarantees:

- High separating efficiency
- Short analysis times
- Excellent reproducibility
- Long lifetime
- Low costs

Metrohm offers the right separation columns for all disciplines in ion chromatography:

- Anions with or without suppression
- Organic acids
- Cations with or without suppression
- Transition metals
- Carbohydrates
- Amines
- Amino acids

A small number of separation columns are sufficient for solving the majority of application problems. Metrohm offers the correct column material, both for standard applications and for complex separation tasks:

- Poly(styrene-co-divinylbenzene)
- Polyvinyl alcohol
- Polymethacrylate
- Silica gelMonolith

This flexibility guarantees top performance. The 2 mm columns enable reduced eluent consumption, low detection limits, and universal use.

Ion chromatography with Metrohm systems can be carried out with or without chemical suppression. Therefore, the application determines the pH value and not the other way around. A large selection of anion eluents is thus available:

- Phthalate
- Benzoate
- Borate
- Hydrogen carbonate
- Carbonate
- Hydroxide

Metrohm is the comprehensive solution for applications in ion chromatography. For more than 35 years, Metrohm has been offering innovative and creative solutions in the area of IC separation columns and IC instruments. A comprehensive network of application laboratories is available worldwide to provide the correct answers to analytical questions: on-site, quickly, and focused on the customer. The Metrohm website (www.metrohm.com) provides an extensive database with information and problem solutions for all areas of ion analysis.

Metrohm – the whole world of ion chromatography

### iColumn

# The world's first intelligent column generation in ion chromatography – just click and start

- All column data available immediately
- Active monitoring of all important column functions
- Uninterrupted retraceability of all column parameters

Intelligent columns, built into all Metrohm IC instruments - the MagIC Net software registers immediately which separation columns are available to the IC system. One click, and the software detects typical standard conditions for columns such as standard eluents and flow rate, the permissible maximum values for pressure and flow, and the correct guard column. This data and other information are applied in the method if desired. As a result, it is no longer necessary to enter all of this data into the method. The iColumn knows how many hours it has already been in operation and how many samples it has already analyzed. MagIC Net monitors the separating efficiency of the column and switches the system off in the event that the permissible pressure is exceeded. If the performance of the column falls below a previously defined value, then MagIC Net can even have the column reordered automatically by E-mail.

If the Metrosep separation column is used in different systems, then it will take along all information stored on its memory chip to the next IC system. This allows for uninterrupted traceability and GLP monitoring, even on different IC devices, for all columns used. System validation is simplified significantly.

# The iColumn concept is flexible and encompasses the following data types:

- Freely definable data, e.g.
- Column name
- Comment field in which, for example, the name of the application can be entered
- Data permanently linked with the column, e.g.
- Column type (e.g. Metrosep A Supp 10 100/4.0)
- Order number
- Serial number
- Standard flow
- Standard eluent
- Standard injection volume
- Standard temperature
- Length x inner diameter
- Particle size
- pH range
- Maximum permitted pressure
- Maximum permitted flow rate
- Data entered by the IC system and the MagIC Net software, e.g.
- Operating hours
- Number of injections
- Maximum pressure
- Maximum flow used

All Metrosep separation columns are available exclusively as iColumns. Excluded from this are the other column types, i.e. guard, preconcentration, and trap columns as well as separation columns which do not have the Metrosep designation.







Which column for which application?

Find the column finder online under https://www.metrohm.com/products/accessories/column-finder.html

# Preselection

|               | 1                  | 1                                             |                     |                         |
|---------------|--------------------|-----------------------------------------------|---------------------|-------------------------|
| Anions Anions | High concentration | without suppression                           | $\rightarrow A$     |                         |
|               |                    | Simple setup                                  |                     |                         |
|               |                    | HBO <sub>3</sub> <sup>2-</sup>                |                     |                         |
|               |                    | H <sub>2</sub> SiO <sub>4</sub> <sup>2-</sup> |                     |                         |
|               |                    | no HPO <sub>4</sub> <sup>2-</sup>             |                     |                         |
|               |                    | Entire concentration                          | with suppression    | → B                     |
|               |                    | spectrum                                      |                     |                         |
|               | Oxidizable anions  | Amperometric detection                        |                     | $\rightarrow$ $\subset$ |
| Cations       |                    |                                               | without suppression | $\rightarrow$ D         |
|               |                    |                                               | with suppression    | $\rightarrow$ E         |
| Additional    | Organic acids      |                                               | with or without     | $\rightarrow$ F         |
| analytes      |                    |                                               | suppression         |                         |
|               | Carbohydrates      | Amperometric detection                        |                     | $\rightarrow$ G         |
|               | Amino acids        | Post-column reaction with                     | ninhydrin           | $\rightarrow$ H         |

This symbol indicates the respective standard

# A) Anions without chemical suppression

| Requirements or application                                                    | Column                      | Page         |
|--------------------------------------------------------------------------------|-----------------------------|--------------|
| No F                                                                           | IC anion column             |              |
| Simple separation problems                                                     | Metrosep A Supp 4 - 250/x.0 |              |
| Simple matrices                                                                | 6.1006.430 (250/4.0)        | <b>√ 42</b>  |
| Rapid separation                                                               | 6.01021.230 (250/2.0)       | <b>√ 100</b> |
| Cl <sup>-</sup> , NO <sub>3</sub> -, SO <sub>4</sub> <sup>2-</sup>             | IC anion columns            |              |
| Difficult matrices (e.g. dyes)                                                 | Hamilton PRP-X100           |              |
| HBO <sub>3</sub> <sup>2-</sup> , H <sub>2</sub> SiO <sub>4</sub> <sup>2-</sup> | 6.1005.000 (125/4.0)        | 32           |
|                                                                                | 6.1005.010 (250/4.0)        | 34           |
| No F <sup>-</sup> , acetate                                                    | IC anion column             |              |
| Difficult matrices                                                             | Super-Sep - 100/4.6         |              |
| Special applications (e.g. BF <sub>4</sub> <sup>-</sup> )                      | 6.1009.000                  | 36           |

# B) Anions with chemical suppression

| Requirements or application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Column                                                                                                                                                                                                                                               | Page                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Perchlorate in difficult matrices, EPA 314<br>Very high ionic strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IC anion column (Monolith) Metrosep Dual 4 - 100/4.6 6.1016.030                                                                                                                                                                                      | 40                                                            |
| Great differences in concentration High ionic strength $CIO_{2}^{-}$ , $CIO_{3}^{-}$ , $CIO_{4}^{-}$ , $BrO_{3}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IC anion column Metrosep A Supp 1 - 250/4.6 6.1005.300                                                                                                                                                                                               | 46                                                            |
| SCN <sup>-</sup> , SO <sub>3</sub> <sup>2-</sup> , SO <sub>4</sub> <sup>2-</sup> , S <sub>2</sub> O <sub>3</sub> <sup>2-</sup><br>Polyphosphates                                                                                                                                                                                                                                                                                                                                                                                                                                       | IC anion column<br>Metrosep A Supp 3 - 250/4.6<br>6.1005.320                                                                                                                                                                                         | 50                                                            |
| Standard anions Difficult matrices Critical samples I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IC anion column Metrosep A Supp 4 - 250/x.0 6.1006.430 (250/4.0) 6.01021.230 (250/2.0)                                                                                                                                                               | <b>√ 42</b><br>100                                            |
| Standard anions F <sup>-</sup> , Cl <sup>-</sup> , Br <sup>-</sup> , l <sup>-</sup> ClO <sub>2</sub> <sup>-</sup> , ClO <sub>3</sub> <sup>-</sup> , ClO <sub>4</sub> <sup>-</sup> , BrO <sub>3</sub> <sup>-</sup> BrO <sub>3</sub> <sup>-</sup> at high ionic strength Cr(VI) (CrO <sub>4</sub> <sup>2-</sup> ) l <sup>-</sup> (not with 250 mm) Method development Universal applications Difficult matrices Difficult separation problems Rapid separation (with 50 and 100 mm) PO <sub>4</sub> <sup>3-</sup> in soft drinks (with 100 mm) IC-MS coupling Applications with gradient | IC anion columns Metrosep A Supp 5 6.1006.550 (50/4.0) 6.1006.510 (100/4.0) 6.1006.520 (150/4.0) 6.1006.530 (250/4.0) 6.1006.220 (150/2.0) 6.1006.230 (250/2.0) Metrosep A Supp 19 6.01034.410 (100/4.0) 6.01034.420 (150/4.0) 6.01034.430 (250/4.0) | 52<br>54<br>56<br>58<br>102<br>104<br>88<br><b>√ 90</b><br>92 |
| Standard anions Oxyhalides, EPA 300 A+B (with 250 mm) Isocratic separation of glycolate and acetate Difficult separations Bayer liquors Applications with gradient                                                                                                                                                                                                                                                                                                                                                                                                                     | IC anion columns Metrosep A Supp 7 6.1006.620 (150/4.0) 6.1006.630 (250/4.0) 6.1006.640 (150/2.0) 6.1006.650 (250/2.0) Metrosep A Supp 21 6.01036.420 (150/4.0) 6.01036.430 (250/4.0)                                                                | 60<br>62<br>106<br>108<br>94<br><b>√ 96</b>                   |

| Requirements or application                                                                                                                                                                                                                                                                                                                                                                                     | Column                                                                                                                                                                                                                       | Page                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Anions in salt solutions                                                                                                                                                                                                                                                                                                                                                                                        | Metrosep Carb 2 - 100/x.0<br>6.1090.410 (100/4.0)<br>6.01090.210 (100/2.0)                                                                                                                                                   | 136<br>146                                       |
| PO <sub>4</sub> <sup>3-</sup> in soft drinks with cyclamate<br>Standard anions (no F <sup>-</sup> )<br>SCN <sup>-</sup> , SO <sub>3</sub> <sup>2-</sup> , SO <sub>4</sub> <sup>2-</sup> , S <sub>2</sub> O <sub>3</sub> <sup>2-</sup><br>Separation SO <sub>3</sub> <sup>2-</sup> , SO <sub>4</sub> <sup>2-</sup><br>Aerosols with MARS/MARGA (75 mm)<br>Air analytics<br>IC-MS coupling<br>Aggressive matrices | IC anion columns Metrosep A Supp 10 6.1020.050 (50/4.0) 6.1020.070 (75/4.0) 6.1020.010 (100/4.0) 6.1020.030 (250/4.0) 6.1020.250 (50/2.0) 6.1020.270 (75/2.0) 6.1020.210 (100/2.0) 6.1020.220 (150/2.0) 6.1020.230 (250/2.0) | 64<br>66<br>68<br>70<br>110<br>112<br>114<br>116 |
| Standard anions Universal applications Non-critical matrices BrO <sub>3</sub> (EPA 326, DIN EN ISO 11206) IC-MS coupling                                                                                                                                                                                                                                                                                        | IC anion columns Metrosep A Supp 16 - 100/x.0 6.1031.410 (100/4.0) 6.1031.210 (100/2.0) Metrosep A Supp 19 - 100/4.0 6.01034.410                                                                                             | 72<br>120<br>88                                  |
| Standard anions Universal applications Complex matrices IC-MS coupling                                                                                                                                                                                                                                                                                                                                          | IC anion columns Metrosep A Supp 16 - 150/x.0 6.1031.420 (150/4.0) 6.1031.220 (150/2.0) Metrosep A Supp 19 - 150/4.0 6.01034.420                                                                                             | 74<br>122<br><b>√ 90</b>                         |
| Standard anions Universal applications Oligosaccharides and polysaccharides Cl <sup>-</sup> , SO <sub>4</sub> <sup>2-</sup> in electroplating baths Silicate in addition to standard anions (4 mm column) Quality monitoring of high-purity chemicals (e.g. conc. acids) Complex separation problems Difficult matrices IC-MS coupling                                                                          | IC anion columns Metrosep A Supp 16 - 250/x.0 6.1031.430 (250/4.0) 6.1031.230 (250/2.0) Metrosep A Supp 19 - 250/4.0 6.01034.430                                                                                             | 76<br>124<br>92                                  |
| Standard anions Water analysis Universal applications Complex separation problems Difficult matrices IC-MS coupling                                                                                                                                                                                                                                                                                             | IC anion columns Metrosep A Supp 17 6.01032.410 (100/4.0) 6.01032.420 (150/4.0) 6.01032.430 (250/4.0) Metrosep A Supp 19 6.01034.410 (100/4.0) 6.01034.420 (150/4.0) 6.01034.430 (250/4.0                                    | 78<br>80<br>82<br>88<br><b>√ 90</b><br>92        |

# C) Oxidizable anions

| Requirements or application                                                                               | Column                       | Page |
|-----------------------------------------------------------------------------------------------------------|------------------------------|------|
| CN⁻                                                                                                       | IC anion column              |      |
| S <sup>2-</sup>                                                                                           | Metrosep A Supp 1 - 250/4.6  |      |
|                                                                                                           | 6.1005.300                   | 46   |
| CN⁻                                                                                                       | IC anion column              |      |
| S <sup>2-</sup>                                                                                           | Metrosep A Supp 10 - 100/x.0 |      |
|                                                                                                           | 6.1020.010 (100/4.0)         | √ 68 |
|                                                                                                           | 6.1020.210 (100/2.0)         | 114  |
| ClO <sub>2</sub> -, NO <sub>2</sub> -, S <sub>2</sub> O <sub>3</sub> <sup>2-</sup> , SCN-, I <sup>-</sup> | IC anion column              |      |
|                                                                                                           | Super-Sep - 100/4.6          |      |
|                                                                                                           | 6.1009.000                   | 36   |
| NO <sub>2</sub> -, ClO <sub>2</sub> -                                                                     | IC anion column              |      |
| S <sub>2</sub> O <sub>3</sub> <sup>2-</sup> , SCN <sup>-</sup> , I <sup>-</sup>                           | Metrosep A Supp 5 - 100/4.0  |      |
|                                                                                                           | 6.1006.510                   | 54   |

# D) Cations without chemical suppression

| Requirements or application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Column                                                                                        | Page                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------|
| Li <sup>+</sup> , Na <sup>+</sup> , K <sup>+</sup> , Rb <sup>+</sup> , Cs <sup>+</sup> , Mg <sup>2+</sup> , Ca <sup>2+</sup> , Sr <sup>2+</sup> , Ba <sup>2+</sup> , NH <sub>4</sub> <sup>+</sup><br>Very rapid separations<br>Simple matrices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IC cation column<br>Metrosep C 4 - 50/4.0<br>6.1050.450                                       | 166                 |
| Li <sup>+</sup> , Na <sup>+</sup> , K <sup>+</sup> , Rb <sup>+</sup> , Cs <sup>+</sup> , Mg <sup>2+</sup> , Ca <sup>2+</sup> , Sr <sup>2+</sup> , Ba <sup>2+</sup> , NH <sub>4</sub> <sup>+</sup><br>Lipophilic amines with short retention times<br>Rapid separations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IC cation columns Metrosep C 4 - 100/x.0 6.1050.410 (100/4.0) 6.1050.210 (100/2.0)            | 168<br>182          |
| Li <sup>+</sup> , Na <sup>+</sup> , K <sup>+</sup> , Rb <sup>+</sup> , Cs <sup>+</sup> , Mg <sup>2+</sup> , Ca <sup>2+</sup> , Sr <sup>2+</sup> , Ba <sup>2+</sup> , NH <sub>4</sub> <sup>+</sup><br>Transition metals<br>Amines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IC cation columns Metrosep C 4 - 150/x.0 6.1050.420 (150/4.0) 6.1050.220 (150/2.0)            | 170<br>184          |
| Li <sup>+</sup> , Na <sup>+</sup> , K <sup>+</sup> , Rb <sup>+</sup> , Cs <sup>+</sup> , Mg <sup>2+</sup> , Ca <sup>2+</sup> , Sr <sup>2+</sup> , Ba <sup>2+</sup> , NH <sub>4</sub> <sup>+</sup> , Mn <sup>2+</sup> , Co <sup>2+</sup> , Ni <sup>2+</sup> , Zn <sup>2+</sup> , Cd <sup>2+</sup> , Pb <sup>2+</sup> , amines NH <sub>4</sub> <sup>+</sup> , ethanolamines Na <sup>+</sup> /NH <sub>4</sub> <sup>+</sup> separation NH <sub>4</sub> <sup>+</sup> , methylamines, and ethylamines Transition metals Difficult separation problems Great differences in concentration                                                                                                                                                                     | IC cation columns Metrosep C 4 - 250/x.0 6.1050.430 (250/4.0) 6.1050.230 (250/2.0)            | 172<br>186          |
| Li <sup>+</sup> , Na <sup>+</sup> , K <sup>+</sup> , Rb <sup>+</sup> , Cs <sup>+</sup> , Mg <sup>2+</sup> , Ca <sup>2+</sup> , Sr <sup>2+</sup> , Ba <sup>2+</sup> , NH <sub>4</sub> <sup>+</sup><br>Lipophilic amines with short retention times<br>Rapid separations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IC cation column<br>Metrosep C 6 - 100/x.0<br>6.1051.410 (100/4.0)<br>6.01051.210 (100/2.0)   | 174<br>188          |
| Amines Transition metals Li <sup>+</sup> , Na <sup>+</sup> , K <sup>+</sup> , Rb <sup>+</sup> , Cs <sup>+</sup> , Mg <sup>2+</sup> , Ca <sup>2+</sup> , Sr <sup>2+</sup> , Ba <sup>2+</sup> , NH <sub>4</sub> <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IC cation column Metrosep C 6 - 150/x.0 6.1051.420 (150/4.0) 6.01051.220 (150/2.0)            | <b>√ 176</b><br>190 |
| Li <sup>+</sup> , Na <sup>+</sup> , K <sup>+</sup> , Rb <sup>+</sup> , Cs <sup>+</sup> , Mg <sup>2+</sup> , Ca <sup>2+</sup> , Sr <sup>2+</sup> , Ba <sup>2+</sup> , NH <sub>4</sub> <sup>+</sup> , Co <sup>2+</sup> , Ni <sup>2+</sup> , Zn <sup>2+</sup> , Cd <sup>2+</sup> , Pb <sup>2+</sup> , Amine  Very good Na <sup>+</sup> /NH <sub>4</sub> <sup>+</sup> separation  NH <sub>4</sub> <sup>+</sup> , (CH <sub>3</sub> )NH <sub>3</sub> <sup>+</sup> , (CH <sub>3</sub> ) <sub>2</sub> NH <sub>2</sub> <sup>+</sup> , (CH <sub>3</sub> ) <sub>3</sub> NH <sup>+</sup> , (CH <sub>3</sub> ) <sub>4</sub> N <sup>+</sup> , and the respective ethanolamines  Difficult separation problems  Great differences in concentration  Transition metals | IC cation columns Metrosep C 6 - 250/x.0 6.1051.430 (250/4.0) 6.01051.230 (250/2.0)           | 178<br>192          |
| Li <sup>+</sup> , Na <sup>+</sup> , K <sup>+</sup> , Rb <sup>+</sup> , Cs <sup>+</sup> , Mg <sup>2+</sup> , Ca <sup>2+</sup> , Sr <sup>2+</sup> , Ba <sup>2+</sup> , NH <sub>4</sub> <sup>+</sup> , Co <sup>2+</sup> , Ni <sup>2+</sup> , Zn <sup>2+</sup> , Cd <sup>2+</sup> , Pb <sup>2+</sup> , amines NH <sub>4</sub> <sup>+</sup> , monoethanolamine Transition metals Na <sup>+</sup> /NH <sub>4</sub> <sup>+</sup> separation Matrices with high pH                                                                                                                                                                                                                                                                                             | IC cation columns Metrosep C 3 6.1010.410 (100/4.0) 6.1010.420 (150/4.0) 6.1010.430 (250/4.0) | 160<br>162<br>164   |
| $Mg^{2+}$ , $Ca^{2+}$ , $Sr^{2+}$ , $Ba^{2+}$ , $Fe^{2+}$ , $Co^{2+}$ , $Ni^{2+}$ , $Cd^{2+}$ , $Zn^{2+}$ , $Mn^{2+}$ $Mg^{2+}$ , $Ca^{2+}$ in addition to large amounts of $Na^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IC cation column<br>Nucleosil 5SA - 125/4.0<br>6.1007.000                                     | 158                 |
| Transition metals, U, and Pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | see footnote on next page                                                                     |                     |

# E) Cations with chemical suppression

| Requirements or application                                                                                                                                                                                                                                                                                                  | Column                                                   | Page  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------|
| Li <sup>+</sup> , Na <sup>+</sup> , K <sup>+</sup> , Rb <sup>+</sup> , Cs <sup>+</sup> , Mg <sup>2+</sup> , Ca <sup>2+</sup> , Sr <sup>2+</sup> , Ba <sup>2+</sup> , NH <sub>4</sub> <sup>+</sup><br>Lipophilic amines with short retention times                                                                            | IC cation columns<br>Metrosep C Supp 1 - 100/4.0         |       |
| Rapid separations                                                                                                                                                                                                                                                                                                            | 6.1052.410                                               | 196   |
| Trace analysis                                                                                                                                                                                                                                                                                                               | Metrosep C Supp 2 - 100/4.0 6.01053.410                  | 202   |
| Li <sup>+</sup> , Na <sup>+</sup> , K <sup>+</sup> , Rb <sup>+</sup> , Cs <sup>+</sup> , Mg <sup>2+</sup> , Ca <sup>2+</sup> , Sr <sup>2+</sup> , Ba <sup>2+</sup> , NH <sub>4</sub> <sup>+</sup><br>Transition metals<br>Amines                                                                                             | IC cation columns Metrosep C Supp 1 - 150/4.0 6.1052.420 | 198   |
| Trace analysis                                                                                                                                                                                                                                                                                                               | Metrosep C Supp 2 - 150/4.0<br>6.01053.420               | √ 204 |
| Li <sup>+</sup> , Na <sup>+</sup> , K <sup>+</sup> , Rb <sup>+</sup> , Cs <sup>+</sup> , Mg <sup>2+</sup> , Ca <sup>2+</sup> , Sr <sup>2+</sup> , Ba <sup>2+</sup> , NH <sub>4</sub> <sup>+</sup> , Mn <sup>2+</sup> , Co <sup>2+</sup> , Ni <sup>2+</sup> , Zn <sup>2+</sup> , Cd <sup>2+</sup> , Pb <sup>2+</sup> , amines | IC cation columns<br>Metrosep C Supp 1 - 250/4.0         |       |
| $NH_4^+$ , ethanolamines $Na^+/NH_4^+$ separation                                                                                                                                                                                                                                                                            | 6.1052.430<br>Metrosep C Supp 2 - 250/4.0                | 200   |
| NH <sub>4</sub> <sup>+</sup> , methylamines, and ethylamines<br>Transition metals                                                                                                                                                                                                                                            | 6.01053.430                                              | 206   |
| Difficult separation problems                                                                                                                                                                                                                                                                                                |                                                          |       |
| Great differences in concentration                                                                                                                                                                                                                                                                                           |                                                          |       |
| Trace analysis                                                                                                                                                                                                                                                                                                               |                                                          |       |
| Transition metals, U, and Pu                                                                                                                                                                                                                                                                                                 | *                                                        |       |

# F) Organic acids

| Requirements or application                                                                                                                                                                                                                                                     | Column                                                                                | Page           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------|
| Organic acids: Citrate, tartrate, malate, ascorbate, succinate, etc.  Short-chain fatty acids: Formate, acetate, propionate, butyrate, etc.  Simple matrices (100 mm)  Difficult matrices (250 mm)  Simple separation problems (100 mm)  Difficult separation problems (250 mm) | IC exclusion columns Metrosep Organic Acids 6.1005.210 (100/7.8) 6.1005.200 (250/7.8) | √ 130<br>√ 132 |
| Glycolic acid, monochloroacetic acid Simple matrices Simple separation problems Formate determination                                                                                                                                                                           | IC exclusion column<br>Hamilton PRP-X300 - 250/4.0<br>6.1005.030                      | 128            |

<sup>\*</sup> Reliable determinations of transition metals as well as uranium and plutonium can be made into the ultra trace range using voltammetry and polarography.

# G) Carbohydrates

| Requirements or application                                                                                           | <b>Column</b> Page                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Monosaccharides Disaccharides Sugar alcohols Oligosaccharides Simple separation problems                              | IC carbohydrate column Metrosep Carb 2 - 100/x.0 6.1090.410 (100/4.0) 136 6.01090.210 (100/2.0) 146 |
| Very rapid separations  Monosaccharides Disaccharides Sugar alcohols Anhydrosugars Oligosaccharides Rapid separations | IC carbohydrate column Metrosep Carb 2 - 150/x.0 6.1090.420 (150/4.0)                               |
| Monosaccharides Disaccharides Sugar alcohols Anhydrosugars Complex separations                                        | IC carbohydrate column Metrosep Carb 2 - 250/x.0 6.1090.430 (250/4.0) 140 6.01090.230 (250/2.0) 150 |
| Monosaccharides Disaccharides Sugar alcohols Oligosaccharides Difficult separation problems Difficult matrices        | IC carbohydrate column Hamilton RCX-30 - 250/4.6 6.1018.000 142                                     |

# H) Amino acids

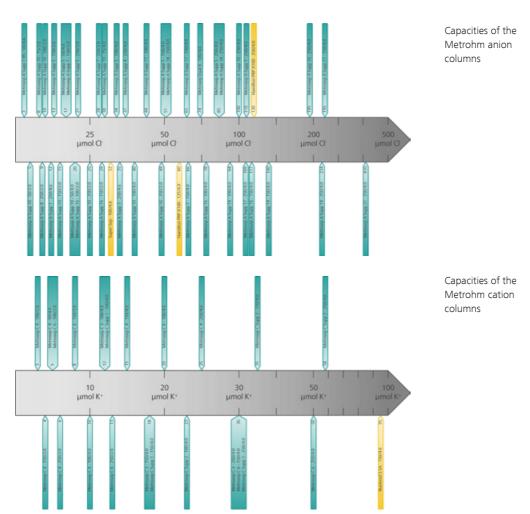
| Requirements or application | Column                           | Page |
|-----------------------------|----------------------------------|------|
| Amino acids                 | IC amino acid column             |      |
|                             | Metrosep Amino Acids 1 - 100/4.0 |      |
|                             | 6.4001.410                       | 154  |

### Capacity of the separation columns

type of the stationary phase used. The capacity has no direct influence on selectivity, whereas the column material does.

In addition, the capacity of a separation column changes in proportion to the quantity of packaging material used. This means that the capacity of a separation column also increases as the column length and diameter increase.

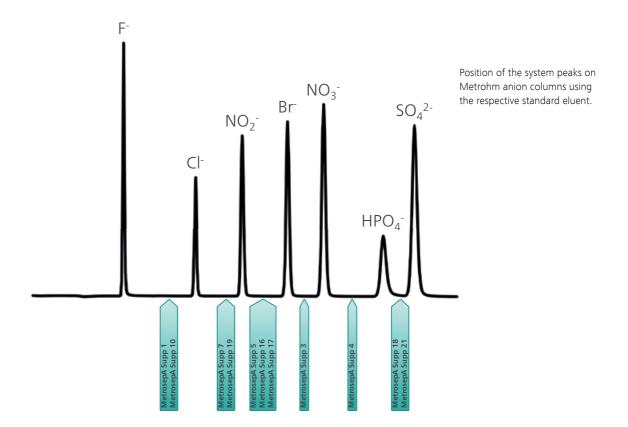
The capacity of separation columns can be determined with a wide variety of methods, all of which can be justified scientifically. The capacities specified here have to do with chloride or potassium exchange capacities, respectively, which are calculated by means of static charging. The specifications of other manufacturers are based to some extent on proton exchange and neutralization methods. The latter results in disproportionately higher numerical values.


The capacity of a separation column is determined by the The capacity specifications of a column manufacturer can be used to compare different columns of this manufacturer. Capacity values from different manufacturers that apply different determination methods are not com-

Which capacity is right? The following rules apply:

- Simple separation tasks, weakly ionic matrix → Small capacity and therefore rapid separation of
- Complex separation tasks, strongly ionic matrix → High capacity and therefore long retention times for the analytes

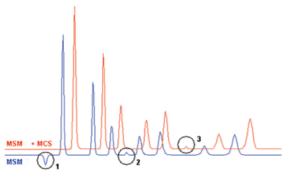
The practical solution is often to be found somewhere in between. Most separations can thus be solved with just


- a limited number of column types:
- Determination of anions: Metrosep A Supp 19 -150/4.0, Metrosep A Supp 5 - 150/4.0, Metrosep A Supp 17 - 150/4.0
- Determination of cations: Metrosep C 6 150/4.0



## Position of the system peak

When work is performed with carbonate or hydroxide eluents, a system peak is always present. Its size and position are determined by various factors. The position of the system peak, however, corresponds in the first approximation to the retention time of carbonate. For this reason this peak is also called the system peak. To ensure that the measured values are not skewed, it is important to know the position of the system peak in the chromatogram. With columns based on Poly(styrene-codivinylbenzene) in particular the system peak often lies directly beneath the chloride peak. The position of the system peak with the respective standard carbonate eluents is shown below.


If the CO<sub>2</sub> suppressor MCS is used, then the influence of carbonate can be virtually excluded. Both system peak and injection peak are minimized and do not interfere with the integration.

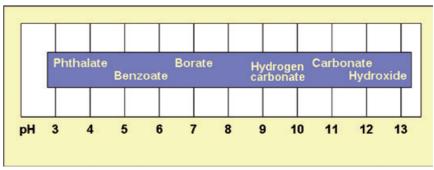


# MCS Metrohm CO<sub>2</sub> Suppressor

The MCS eliminates both carbonate from the sample and CO<sub>2</sub> that develops during the suppression reaction. As a result, the injection peak is practically nonexistent and the peak areas of the analyte ions are significantly larger. In addition, the system peak is effectively eliminated. The MCS is based on the gas permeability of a fluoropolymer membrane. The special system setup with an integrated vacuum cell, a fluoropolymer membrane, and a CO<sub>2</sub> adsorber cartridge is controlled by MagIC Net.

#### Chromatography the way it should always be




Chromatography with (red) and without sequential suppression (blue)

A unique feature of Metrohm IC is the combination of chemical suppression with the MSM (Metrohm Suppressor Module) and CO<sub>2</sub>-suppression using the MCS (Metrohm CO<sub>2</sub>, Suppressor) for sequential suppression. This technique achieves lowest background conductivities for anion and cation suppression.

# range to obtain an optimum separation.

Metrohm enables successful working with a large number of eluents. The correct choice of eluent has a decisive influence on the analytics. With Metrohm, there are no limitations and you can use virtually the entire pH

of the pH value



23

pH ranges of various eluents for anion chromatography

• Lower detection limits (3) • Minimized carbonate influence (2)

• Extremely low background conductivity

• Very small injection peak (1)

• Larger peak areas

• No system peak (2)

Flexibility in application thanks to free selection

### **Standards**

The world of standards is also changing. Today it is the result that matters when it comes to compliance with standards. Which instrument was used to calculate the result is of secondary importance. This was not always analytical instruments is in part due to the commitment brackets. of Metrohm application chemists, who have demonstrated to standards committees that new methods can also produce the correct result and therefore meet requirements.

The following standards deal with the determination of anions and cations in water using ion chromatography. The analytical requirements of these standards can be met with Metrohm IC systems. The separation columns the case. The fact that today you have a free choice of with which the standard can be fulfilled are indicated in

#### EPA 300.1 Part A and Part B

Determination of inorganic anions in drinking water by ion chromatography. (Metrosep A Supp 7 - 250/4.0; 6.1006.630 or Metrosep A Supp 21 - 250/4.0; 6.01034.430)

#### EPA 314.0

Determination of perchlorate in drinking water by ion chromatography. (Metrosep Dual 4 - 100/4.6; 6.1016.030)

#### EPA 218.7

Determination of dissolved hexavalent chromium by means of ion chromatography (post-column reaction and VIS detection). (Metrosep A Supp 5 - 150/4.0; 6.1006.520)

### EPA 317.0

Determination of inorganic oxyhalide disinfection byproducts in drinking water using ion chromatography. Trace analysis of bromate by means of post-column reaction – «o-dianisidine method». (Metrosep A Supp 5 -250/4.0: 6.1006.530)

#### **EPA 326, DIN EN ISO 11206**

Determination of inorganic oxidation by-products in drinking water using ion chromatography. Trace analysis of bromate by means of post-column reaction and UV DIN 38405-7 detection - «triiodide» method. Improved method without acidification using a suppressor. (Metrosep A Supp 16 - 100/4.0; 6.1031.410 or Metrosep A Supp 19 A Supp 10 - 100/2.0; 6.1020.210) - 100/4.0: 6.01034.410)

#### EPA 332.0

Determination of perchlorate in drinking water by ion chromatography with chemical suppression as well as conductivity detection and ESI/MS detection. (Metrosep A Supp 5 - 100/4.0; 6.1006.510)

#### DIN 38413-8

Determination of the dissolved complexing agents nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), and diethylenetriaminepentaacetic acid (DTPA) by liquid chromatography (LC). (2 x MetroSil RP 3 - 150/4.0; 6.01070.420)

#### **DIN EN ISO 14911**

Water quality - Determination of dissolved lithium, sodium, ammonium, potassium, manganese(II), calcium, magnesium, strontium, and barium using ion chromatography – Method for water and wastewater. (Metrosep C 4 - 150/4.0; 6.1050.420 or Metrosep C 6 - 150/4.0;

#### **DIN EN 13368-1**

Determination of chelating agents in fertilizers by ion chromatography, Part 1: HEDTA, EDTA, DTPA. (Metrosep A Supp 3 - 250/4.6; 6.1005.320)

Determination of cyanides in slightly polluted water by ion chromatography or potentiometric titration (Metrosep

#### **DIN EN ISO 10304-1**

Water quality – Determination of the dissolved anions fluoride, chloride, nitrite, orthophosphate, bromide, nitrate, and sulfate by liquid chromatography - Part 1: Method for slightly polluted wastewater. (Metrosep A Supp 19 - 150/4.0 or Metrosep A Supp 5 - 250/4.0; 6.1006.530)

#### **DIN EN ISO 10304-3**

Water quality - determination of dissolved anions by liquid chromatography (LC) - Part 3: Determination of chromate, iodide, sulfite, thiocyanate, and thiososulfate in wastewater. (Metrosep A Supp 17 - 150/4.0; 6.01032.420 or Metrosep A Supp 5 - 150/4.0; 6.1006.520)

### **DIN EN ISO 10304-4**

Water quality - Determination of dissolved anions by liquid chromatography (LC) - Part 4: Determination of chlorate, chloride, and chlorite in slightly polluted wastewater. (Metrosep A Supp 5 - 250; 6.1006.530)

#### **DIN EN ISO 15061**

Determination of dissolved bromate in water. (Metrosep A Supp 5 - 250/4.0; 6.1006.530 or Metrosep A Supp 7 - 250/4.0; 6.1006.630)

### ABC of practical work

#### **Bacterial growth**

Bacterial growth has a significant negative effect on chromatography and destroys the analytical columns. A large number of chromatographic problems can be traced back to the growth of algae, bacteria, and molds. In order to prevent bacterial growth, eluents, rinsing, and regeneration solutions should always be prepared fresh and not reused after prolonged periods. We recommend that all vessels be thoroughly rinsed with ultrapure and UV-treated water and then rinsed with methanol/water or acetone/water and finally again with water before being refilled. If bacteria or algae should form despite this treatment, then 5% methanol or acetone can be added to the eluent. This is not possible when using membrane suppressors, because these could be destroyed by organic solvents. The «MSM», «MSM-HC», and «MSM-LC» Metrohm Suppressor Modules are 100% solvent-resistant. Methanol should not be used with some cation columns.

#### Cation analyses

For all analyses we recommend that the samples be acidified with nitric acid (approximately 100  $\mu$ L 2 mol/L HNO<sub>3</sub> per 100 mL of sample) (pH 2.5–3.5), otherwise divalent cation results may be overestimated depending on the age of the injection loop.

#### **Chemical stress**

Although many separation phases cover a wide pH range in terms of specification, this does not mean that they are chemically inert. Separation columns achieve their longest service life under constant chemical conditions. A column must never be allowed to dry out and must always be kept well-sealed.

#### CO

Carbon dioxide from air affects alkaline eluents. To avoid this, the eluent bottle should always be furnished with a CO<sub>2</sub> adsorber material («soda lime»). Eluents with a weak buffer capacity must also be protected against CO<sub>2</sub>.

#### Degassing the eluent

In order to prevent bubble formation, we recommended to use the Eluent Degasser in the IC instrument. Alternatively this is done by applying a vacuum created by a water-jet pump or vacuum pump for approximately 10 minutes or by means of an ultrasonic bath.

#### **Eluent bottles**

Eluents are positioned in special eluent bottles, usually directly on the IC system. To prevent moisture and carbon dioxide from being absorbed by the eluent, the bottles are equipped with a drying tube which normally has a molecular sieve and is filled with soda lime (as a weak  $\mathrm{CO}_2$  adsorber material) for sodium hydroxide and carbonate eluents.

#### **Environmental protection**

A great advantage of ion chromatography is that most work is carried out with aqueous media. The chemicals used in ion chromatography are therefore as non-toxic as possible and do not pollute the environment. Nevertheless, when work is carried out with acids, bases, organic solvents, or heavy metal standards, they must be disposed of properly after use.

#### Filter

If problems occur with IC systems, they are usually due to particles introduced by bacterial growth, unfiltered eluents, by the sample or by rinsing and regeneration solutions. This risk can be reduced to an absolute minimum by using an aspiration filter (6.2821.090), inline filter (6.2821.120), and guard columns. The filters are part of the basic equipment of the Metrohm ion chromatographs and are included in the scope of delivery. We strongly recommend their use. Care should be taken to ensure that the filters are replaced regularly.

#### Filtration of the eluent

All eluents should be microfiltered (0.45  $\mu$ m) immediately before being used.

#### Fun

Ion chromatography should be fun and not get on your nerves. Metrohm does everything it can to ensure that your IC systems work reliably with a minimum of upkeep, maintenance, and cost. Metrosep separation columns stand for quality, long lifetime, and outstanding results.

#### **Guard columns (precolumns)**

Guard columns are used to protect the valuable separation columns. We strongly recommend their use. They contain the same stationary phase as the separation column, although in a considerably smaller quantity to avoid influencing the chromatography. Guard columns

eliminate critical contaminations which might react with the column material and they effectively eliminate particles and bacterial contamination. Guard columns need to be replaced if

- the backpressure in the system rises
- the chromatography gets worse

It is recommended to use 3–4 guard columns during the lifetime of an analytical column. Guard columns are available for all Metrosep separation columns.

#### Long-term storage of the ion chromatograph

If the ion chromatograph will not be used for a prolonged period (>1 week), then the separation column should be removed and sealed with the stoppers provided. The ion chromatograph should be rinsed with methanol/water (1:4). Care should be taken to ensure that all three chambers of the suppressor are rinsed during this process. The separation column should be stored in the medium listed on the column leaflet, optimally between 4 and 8 °C. When the instrument is restarted, rinse the system with fresh eluent before installing the separation column and bring it up to room temperature.

#### **Particles**

All solutions, samples, regeneration solutions, the water and the eluents should be free of particles because they may clog the separation columns over time (increase in column pressure). This must be taken into account particularly when eluents are being produced, because eluents flow continuously through the column (500–1000 mL per working day in contrast to approximately 1 mL of sample solution). The sample can be filtered or dialyzed fully automatically with the «MISP» Metrohm Inline Sample Preparation systems.

#### **Pulsation absorber**

We recommend the use of a pulsation absorber (6.2620.150). In particular, polymethacrylate and polyvinyl alcohol columns should be protected against brief pressure surges which inevitably occur when the valves are switched. This protection is ensured when a pulsation absorber is used.

#### **Quality of chemicals**

All chemicals should be at least of p.a. or puriss. quality. The standards must be specially suited to ion chromatography.

#### Regeneration of separation columns

As a rule, if separation columns are operated with clean eluents and charged with particle-free samples, then a very long lifetime is guaranteed. A regeneration of the column is then not necessary and is also no longer possible after a large number of injections. Nevertheless, if the pressure in the column should rise unexpectedly or the separating efficiency decrease, then the regeneration steps which are indicated for each separation column can be carried out. In general, it must be noted that the regeneration takes place outside the analytical line. This means that the separation column is connected directly to the pump and the regeneration solution feeds through the column directly into the waste vessel. Before the separation column is reinstalled, it should be rinsed sufficiently – for 30 minutes at standard flow – with fresh eluent

#### Sample-preparation cartridges

Sample-preparation cartridges are used for the preparation of critical samples which cannot be injected directly on the separation columns. Thus, for example, sample-preparation cartridges remove organic contamination or neutralize strongly alkaline or acidic samples. Sample-preparation cartridges are consumable materials which, as a rule, cannot be regenerated. They do not replace the guard column (precolumn), which should always be used with each separation column. «MISP» (Metrohm Inline Sample Preparation) offers an alternative to sample cartridges, e.g. for the fully automated neutralization of alkaline samples.

#### Water quality

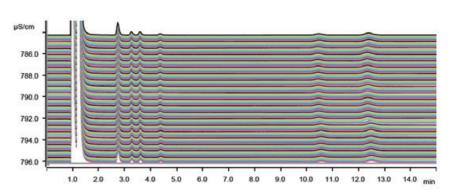
Ion chromatography primarily involves work in aqueous media. Water quality is therefore of decisive importance for obtaining good chromatographic results. If the water quality is unsatisfactory, then the results will certainly be unsatisfactory as well. In addition, there is the risk of damaging instruments and separation columns due to insufficient water quality. The ultrapure water used should have a specific resistance greater than 18  $M\Omega\text{-cm}$  and be particle-free. It is therefore recommended that the water be filtered through a 0.45  $\mu\text{m}$  filter and treated with UV. Modern ultrapure water plants for laboratory use guarantee this water quality (Type I).

# Tips for eluent preparation

Please note that the eluents must be degassed once in The exact concentration specifications of the recomorder to avoid bubble formation during the measure- mended standard eluents are listed in the chapter «Sepaments. Degassing can be carried out fully automatically by the eluent degasser in the IC instrument. Alternatively, the ultrapure water used can already be degassed before the reagents are added.

Excellent water quality (high resistance, absence of particles, and bacteria) is crucial for good ion chromatography (see also the chapter «ABCs of practical work».




#### **Inline Eluent Preparation**

Inline Eluent Preparation means that eluent is refilled fully automatically while the ion chromatograph is in operation. An eluent concentrate is diluted in portions with required eluent.

For automatic Inline Eluent Preparation, the 940 Professional IC Vario or 930 Compact IC Flex only need to be expanded to include an 941 Eluent Production Module.

Tests with repeated injections of 250 µg/L standard solutions over a time period of approximately 20 days have demonstrated outstanding stability with respect to reten-

tion times. After more than 800 sample injections, the relative standard deviations for a series of anions and cations were less than 0.55 and 0.41 percent, respectively. During a test sequence over a 24-hour period, the ultra pure water for the purpose of producing the precision of the retention times for anions and cations were better than 0.09 and 0.08 percent, respectively. In short, this increases the reproducibility of retention times, thus permitting the exact analysis of anions and cations over extended periods, and does so without manual eluent



Superimposition of 200 sequential cation chromatograms (250 µg/L of the standard cation)



# Separation columns



IC anion-separation columns for analyses without chemical suppression

## Hamilton PRP-X100 - 125/4.0 (6.1005.000)

The Hamilton PRP-X100 - 125/4.0 IC anion column is a robust separation column based on poly(styrene-codivinylbenzene) copolymer. It is especially suited for the separation of chloride, nitrate, and sulfate without • HBO<sub>3</sub><sup>2-</sup>, H<sub>2</sub>SiO<sub>4</sub><sup>2-</sup> chemical suppression. Fluoride can also be determined if the cations are first removed with an H<sup>+</sup> cartridge. The Hamilton PRP-X100 - 125/4.0 is also the separation column of choice for the determination of silicate. The column is characterized by a very good price-performance ratio.

#### **Applications**

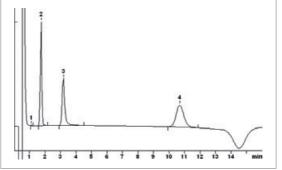
- Cl<sup>-</sup>, NO<sub>3</sub> -, SO<sub>4</sub> <sup>2-</sup>
- Difficult matrices, e.g. dyes

| Technical information |                            |
|-----------------------|----------------------------|
| Substrate             | Poly(styrene-co-           |
|                       | divinylbenzene) with qua-  |
|                       | ternary ammonium groups    |
| Column dimensions     | 125 x 4.0 mm               |
| Column body           | Stainless steel            |
| Standard flow         | 2.0 mL/min                 |
| Maximum flow          | 8.0 mL/min                 |
| Maximum pressure      | 34 MPa                     |
| Particle size         | 10 μm                      |
| Organic modifier      | 0-100%                     |
| pH range              | 1–13 (T > 30 °C: 1–8)      |
| Capacity              | 60 µmol (Cl <sup>-</sup> ) |

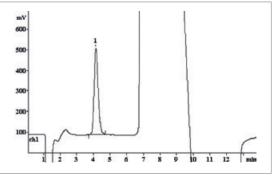
#### Eluents

| Phthalic acid eluent | Phthalic acid                         | 665 mg/2 L    | 2.0 mmol/L           |
|----------------------|---------------------------------------|---------------|----------------------|
| (standard eluent)    | Acetone                               | 152 mL/2 L or | 7.6% or 10%          |
|                      |                                       | 200 mL/2 L    |                      |
|                      |                                       |               |                      |
|                      | NaOH                                  |               | pH = 5               |
| Silicate eluent      | NaOH  Sodium hydroxide (c = 10 mol/L) | 0.64 mL/2 L   | pH = 5<br>3.2 mmol/L |

#### Care


#### Regeneration

Rinse the column with 0.5 mol/L tartaric acid or with For short periods (days) in the eluent, for longer periods 60 mmol/L nitric acid in methanol at a flow rate of (weeks) in methanol/water (1:4) 0.5 mL/min for 2 h.


In case of contamination with iron: Rinse the column overnight with 0.1 mmol/L  $\mathrm{Na_2H_2EDTA}$ at a flow rate of 0.5 mL/min.



|                                             | 1 2   | 3    | 4 | 5 | 6 | ż   | 8 | 9 | 10 | ú   | 12   | 13 | 14 | min   |
|---------------------------------------------|-------|------|---|---|---|-----|---|---|----|-----|------|----|----|-------|
| Phthalic acid eluent, standard Conc. (mg/L) |       |      |   |   |   |     |   |   |    |     |      |    |    |       |
| 1                                           | Fluo  | ride |   |   |   | 5.0 | 0 | 4 |    | Bro | mi   | de |    | 10.00 |
| 2                                           | Chlo  | ride |   |   |   | 5.0 | 0 | 5 |    | Nit | rate | 9  |    | 10.00 |
| 3                                           | Nitri | te   |   |   |   | 5.0 | 0 | 6 |    | Sul | fate | 5  |    | 10.00 |







| Silicate | e eluent, standard |      | Conc. (mg/L) |
|----------|--------------------|------|--------------|
| 1        | Silicate           | 5.00 |              |

| Ordering information                         |             |
|----------------------------------------------|-------------|
| Hamilton PRP-X100 - 125/4.0                  | 6.1005.000  |
| Guard column cartridge for Hamilton PRP-X100 | 6.1005.020  |
| Guard cartridge holder, 20 mm                | 6.02821.000 |

# Hamilton PRP-X100 - 250/4.0 (6.1005.010)

The Hamilton PRP-X100 - 250/4.0 IC anion column is a **Applications** robust separation column based on poly(styrene-codivinylbenzene) copolymer. It is mainly used with difficult matrices, e.g. dyes.

Conductivity detection

- Cl<sup>-</sup>, NO<sub>3</sub> -, SO<sub>4</sub> <sup>2-</sup>
- Difficult matrices, e.g. dyes

| Technical information |                             |
|-----------------------|-----------------------------|
| Substrate             | Poly(styrene-co-            |
|                       | divinylbenzene)with qua-    |
|                       | ternary ammonium groups     |
| Column dimensions     | 250 x 4.0 mm                |
| Column body           | Stainless steel             |
| Standard flow         | 2.0 mL/min                  |
| Maximum flow          | 8.0 mL/min                  |
| Maximum pressure      | 34 MPa                      |
| Particle size         | 10 μm                       |
| Organic modifier      | 0-100%                      |
| pH range              | 1–13 (T > 30 °C: 1–8)       |
| Capacity              | 120 μmol (Cl <sup>-</sup> ) |

#### Eluent

| Phthalic acid eluent (standard eluent) | Phthalic acid<br>Acetone | 665 mg/2 L<br>152 mL/2 L or | 2.0 mmol/L<br>7.6% or 10% |
|----------------------------------------|--------------------------|-----------------------------|---------------------------|
|                                        |                          | 200 mL/2 L                  |                           |
|                                        | NaOH                     |                             | pH = 5                    |

#### Care

Regeneration

Rinse the column with 0.5 mol/L tartaric acid or with For short periods (days) in the eluent, for longer periods 60 mmol/L nitric acid in methanol at a flow rate of (weeks) in methanol/water (1:4) 0.5 mL/min for 2 h.

In case of contamination with iron: Rinse the column overnight with 0.1 mmol/L Na<sub>2</sub>H<sub>2</sub>EDTA at a flow rate of 0.5 mL/min.

Storage



| Ordering information                         |             |
|----------------------------------------------|-------------|
| Hamilton PRP-X100 - 250/4.0                  | 6.1005.010  |
| Guard column cartridge for Hamilton PRP-X100 | 6.1005.020  |
| Guard cartridge holder, 20 mm                | 6.02821.000 |

35

# Super-Sep - 100/4.6 (6.1009.000)

In addition to the analysis of standard anions without chemical suppression, this column can be used for a variety of special applications. The Super-Sep - 100/4.6 IC • F-, acetate anion column can be used for successful phosphate detection with alkaline eluent. Formate, acetate, and fluoride can be separated with suitable eluents. Overall, it is a column with very good separation performance.

#### Applications

Conductivity detection

- Difficult matrices
- Special applications, e.g. BF<sub>4</sub> Amperometric detection
- ClO<sub>2</sub><sup>-</sup>, NO<sub>2</sub><sup>-</sup>, S<sub>2</sub>O<sub>3</sub><sup>2-</sup>, SCN<sup>-</sup>, I<sup>-</sup>

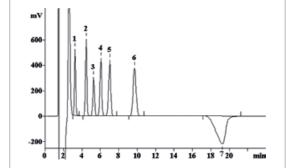
| Technical information |                            |
|-----------------------|----------------------------|
| Substrate             | Polymethacrylate           |
| Column dimensions     | 100 x 4.6 mm               |
| Column body           | Stainless steel            |
| Standard flow         | 1.5 mL/min                 |
| Maximum flow          | 2.0 mL/min                 |
| Maximum pressure      | 2.5 MPa                    |
| Particle size         | 12 μm                      |
| Organic modifier      | 0-20%                      |
| pH range              | 1–13                       |
| Temperature range     | 20-50 °C                   |
| Capacity              | 32 µmol (Cl <sup>-</sup> ) |

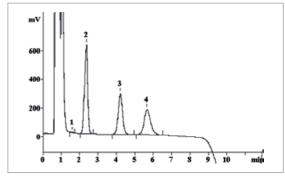
#### Eluent

| Phthalic acid eluent | Phthalic acid | 831 mg/2 L | 2.5 mmol/L |
|----------------------|---------------|------------|------------|
| (standard eluent)    | Acetonitrile  | 100 mL/2 L | 5.0%       |
|                      | TRIS          |            | pH = 4.0   |

#### Care

Regeneration


Storage Rinse the column with 20% acetonitrile in 0.1 mol/L nitric In the eluent acid; flow rate 0.3 mL/min for approx. 24 h.


If insufficient:

- Metal contaminants: 0.1 mol/L sodium tartrate
- Protein contaminants: 0.1 mol/L sodium hydroxide or 20% acetic acid
- Organic contaminants: 20% acetonitrile in ultrapure water



#### Chromatograms





37

| Phthalic acid eluent, standard Conc. (mg/L) |          |       |   | Phtł        | nalic acid eluent | drinking wate | er san   | nple | Conc. | (mg/L)   |      |      |
|---------------------------------------------|----------|-------|---|-------------|-------------------|---------------|----------|------|-------|----------|------|------|
| 1                                           | Fluoride | 5.00  | 5 | Nitrate     | 10.00             | 1             | Fluoride | 0.03 | 4     | Sulfate  |      | 5.35 |
| 2                                           | Chloride | 5.00  | 6 | Sulfate     | 10.00             | 2             | Chloride | 6.43 | 5     | System p | oeak | _    |
| 3                                           | Nitrite  | 5.00  | 7 | System peak | -                 | 3             | Nitrate  | 7.83 |       |          |      |      |
| 4                                           | Bromide  | 10.00 |   |             |                   |               |          |      |       |          |      |      |

| Ordering information |            |
|----------------------|------------|
| Super-Sep - 100/4.6  | 6.1009.000 |
| Super-Sep Guard/4.6  | 6.1009.010 |



# Separation columns



IC anion-separation columns for analyses with or without chemical suppression

## Metrosep Dual 4 - 100/4.6 (6.1016.030)

The Metrosep Dual 4 separation columns are based on a functionalized monolith based on silica gel. The monolith permits an eluent flow of up to 5 mL/min. Despite the high flow, the column is characterized by low backpressure. In contrast to traditional materials, the monolith has a much larger surface due to its structure of macropores and mesopores. This contributes to the high column capacity with simultaneously very low dead volume.

The Metrosep Dual 4 - 100/4.6 is suitable for a great number of applications. All standard anions can thus be separated in less than nine minutes. The high column capacity makes it largely insensitive to matrix influences. Even in a matrix of 3 g/L chloride, carbonate and sulfate, 0.5 µg/L perchlorate can be detected. The column is therefore used in perchlorate analysis in accordance with EPA standard 314.

The column can be used with or without chemical suppression. When p-cyanophenol is used as the eluent, it is recommended that the Metrosep RP Trap 1 - 50/4.0 (6.1014.100) be installed between pulsation absorber and injection valve.

#### Applications

- Rapid separations
- Complex sample matrices
- EPA 314
- Detection of perchlorate

| _   |        |       |        |
|-----|--------|-------|--------|
| Tec | hnıcal | Intor | mation |

Monolithic silica gel Substrate Column dimensions 100 x 4.6 mm Column body PEEK 2.0 mL/min Standard flow Maximum flow 5.0 mL/min Maximum pressure 20 MPa Monolith with 2 µm macro-Particle size

pores and 13 nm mesopores

Organic modifier 0-5% (methanol or acetonitrile only)

pH range 2-8

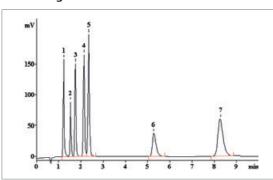
Temperature range 10-60 °C

Capacity 74 μmol (Cl<sup>-</sup>)

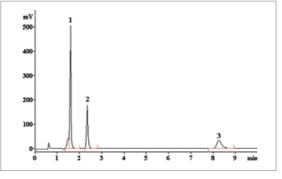
#### Eluent

| p-cyanophenol eluent | p-cyanophenol | 2859 mg/2 L | 12.0 mmol/L        |
|----------------------|---------------|-------------|--------------------|
| (standard eluent)    | KOH           |             | $pH = 7.4 \pm 0.1$ |

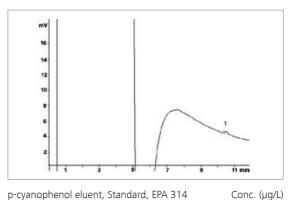
Preparation


Rinse the column with eluent for 0.5–1 h.

Storage In the eluent


Regeneration

Rinse the column with a maximum of 5% acetonitrile at a flow rate of 0.5 mL/min for 30 min.


### Chromatograms



| р-су | anophenol elue | nt, standard |   | Con       | ic. (mg/L) |
|------|----------------|--------------|---|-----------|------------|
| 1    | Fluoride       | 2.00         | 5 | Nitrate   | 10.00      |
| 2    | Chloride       | 2.00         | 6 | Phosphate | 10.00      |
| 3    | Nitrite        | 5.00         | 7 | Sulfate   | 10.00      |
| 4    | Bromide        | 10.00        |   |           |            |







| cyanophenor ela |           | COLIC     | · (µg/L/      |      |
|-----------------|-----------|-----------|---------------|------|
| Chloride        | 1,000,000 | 1 Pe      | rchlorate     | 0.54 |
| Carbonate       | 1,000,000 |           |               |      |
| Sulfate         | 1,000,000 | Flow rate | e 1.75 mL/mii | n    |
|                 |           | Sample    | volume 750 u  | I    |

| Ordering information                                                                     |            |
|------------------------------------------------------------------------------------------|------------|
| Metrosep Dual 4 - 100/4.6                                                                | 6.1016.030 |
| Guard column kit for the Metrosep Dual 4, comprised of three guard column cartridges and |            |
| one guard column cartridge holder                                                        | 6.1016.500 |
| Guard column cartridges for the Metrosep Dual 4 (3 pcs.)                                 | 6.1016.510 |

## Metrosep A Supp 4 - 250/4.0 (6.1006.430)

The Metrosep A Supp 4 - 250/4.0 is an extremely robust column with very good separation properties. The separation phase is comprised of polyvinyl alcohol particles with quaternary ammonium groups and a diameter of 9  $\mu m$ . This structure guarantees great stability and a greater tolerance to very small particles which could pass through the integrated filter plate. The Metrosep A Supp 4 - 250/4.0 has a medium ion-exchange capacity; sulfate elutes after 12.5 minutes. The number of plates which can be achieved with this separation column is high. Therefore the Metrosep A Supp 4 - 250/4.0 is particularly suitable for all routine tasks in water analysis.

To protect the IC separation column – even though it is not particularly sensitive to contaminants – we recommend the use of the Metrosep A Supp 4 Guard/4.0 or the Metrosep A Supp 4 S-Guard/4.0.

#### Applications

- Standard anions
- Water analysis
- Difficult matrices
- Critical samples
- Iodide

#### Eluent

Without chemical suppression

| Phthalic acid eluent      | Phthalic acid             | 1660 mg/2 L | 5.0 mmol/L |
|---------------------------|---------------------------|-------------|------------|
| (standard eluent)         | Acetone                   | 40 mL/2 L   | 2.0%       |
|                           | TRIS                      |             | pH = 4.4   |
| With chemical suppression |                           |             |            |
| Carbonate eluent          | Sodium hydrogen carbonate | 286 mg/2 L  | 1.7 mmol/L |
| (standard eluent)         | Sodium carbonate          | 382 mg/2 L  | 1.8 mmol/L |
| Carbonate eluent, mod.    | Sodium hydrogen carbonate | 672 mg/2 L  | 4.0 mmol/L |
|                           | Sodium carbonate          | 212 mg/2 l  | 1.0 mmol/l |

#### Care

Regeneration

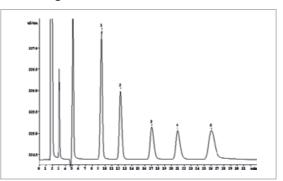
Contamination with hydrophilic ions:

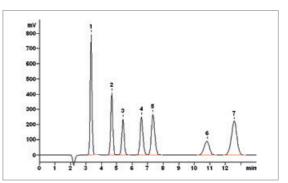
- a) Rinse with ultrapure water (15 min at 0.5 mL/min)
- b) Rinse with 10x concentrated eluent

(60 min at 0.5 mL/min)

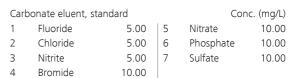
- c) Rinse with ultrapure water (15 min at 0.5 mL/min)
- d) Rinse with eluent (60 min at 0.5 mL/min)

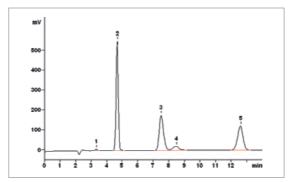
Contamination with lipophilic ions:

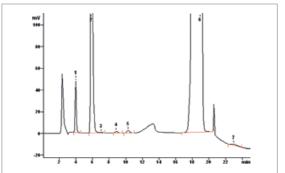

- a) Rinse with ultrapure water (15 min at 0.5 mL/min)
- b) Rinse with 5% acetonitrile (10 min at 0.5 mL/min)
- c) Rinse with 100% acetonitrile (60 min at 0.5 mL/min)
- d) Rinse with 50% acetonitrile (10 min at 0.5 mL/min)
- e) Rinse with ultrapure water (30 min at 0.5 mL/min)
- f) Rinse with eluent (60 min at 0.5 mL/min)


Storage

In the eluent





#### Chromatograms






| Phtha | ilic acid eluent, star | ndard |   |         | Conc. (mg/L) |
|-------|------------------------|-------|---|---------|--------------|
| 1     | Chloride               | 25.0  | 4 | Nitrate | 25.0         |
| 2     | Nitrite                | 25.0  | 5 | Sulfate | 25.0         |
| 3     | Bromide                | 25.0  |   |         |              |







| Carb | onate eluent, d | Irinking water |   | Conc        | . (mg/L) |
|------|-----------------|----------------|---|-------------|----------|
| 1    | Fluoride        | 0.04           | 4 | System peak | _        |
| 2    | Chloride        | 5.25           | 5 | Sulfate     | 6.90     |
| 3    | Nitrate         | 10.36          |   |             |          |

| Carbo | nate eluent, mod., | mineral w | /ater |         | Conc. (mg/L) |
|-------|--------------------|-----------|-------|---------|--------------|
| 1     | Fluoride           | 0.685     |       | Nitrate | 0.267        |
| 2     | Chloride           | 17.43     | 6     | Sulfate | 121.0        |
| 3     | Nitrite            | 0.037     | 7     | Iodide  | 0.034        |
| 4     | Bromide            | 0.181     |       |         |              |

| Ordering information          |             |
|-------------------------------|-------------|
| Metrosep A Supp 4 - 250/4.0   | 6.1006.430  |
| Metrosep A Supp 4 Guard/4.0   | 6.01021.500 |
| Metrosep A Supp 4 S-Guard/4.0 | 6.01021.510 |



# Separation columns



IC anion-separation columns for analyses with chemical suppression

# Metrosep A Supp 1 - 250/4.6 (6.1005.300)

The Metrosep A Supp 1 - 250/4.6 is a universal anion column which is characterized by medium capacity and special selectivity. With this column it is possible to process samples with great differences in concentration. For example, 4 µg/L of sulfate can be determined in a solution containing 150 g/L sodium chloride. An additional advantage is that bromide elutes after nitrate. Particularly in the area of oxyhalide analysis, the A Supp 1 - 250/4.6 excels in its outstanding separation properties. Pressure fluctuations, constantly changing eluents, and large sample throughput do not influence the separating efficiency of this column, even after very long periods. It is the «workhorse» for development and routine laboratories.

#### Applications

Conductivity detection

- Great differences in concentration
- High ionic strength
- ClO<sub>2</sub> -, ClO<sub>3</sub> -, ClO<sub>4</sub> -

Amperometric detection

- CN<sup>-</sup>
- S<sup>2-</sup>

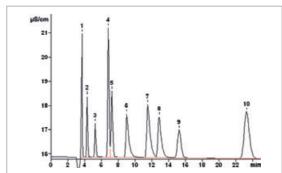
| Technical information |                            |
|-----------------------|----------------------------|
| Substrate             | Poly(styrene-co-           |
|                       | divinylbenzene) with qua-  |
|                       | ternary ammonium groups    |
| Column dimensions     | 250 x 4.6 mm               |
| Column body           | PEEK                       |
| Standard flow         | 1.0 mL/min                 |
| Maximum flow          | 2.5 mL/min                 |
| Maximum pressure      | 15 MPa                     |
| Particle size         | 7 μm                       |
| Organic modifier      | 0-100%                     |
| pH range              | 1–13                       |
| Temperature range     | 10-70 °C                   |
| Capacity              | 12 μmol (Cl <sup>-</sup> ) |

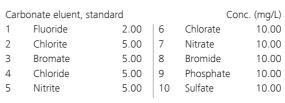
#### Eluents

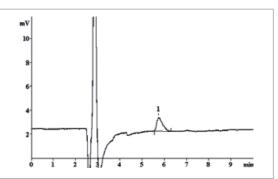
| Carbonate eluent        | Sodium carbonate                | 636 mg/2 L | 3.0 mmol/L |
|-------------------------|---------------------------------|------------|------------|
| (standard eluent)       |                                 |            |            |
| Sodium hydroxide eluent | Sodium hydroxide (c = 10 mol/L) | 20 mL/2 L  | 100 mmol/L |

#### Care

a flow rate of 0.5 mL/min. Then rinse with 0.1 mol/L column in a refrigerator at minimum +4 °C. sodium hydroxide at 0.5 mL/min for 1 h.


#### Organic contaminants:


Rinse with 70% methanol at 1.0 mL/min for 12 h. The addition of 1% acetic acid may be useful.


Rinse with 50 mL of a 0.05 mol/L solution of Na<sub>4</sub>EDTA at In the eluent. For a longer period (weeks), store the



#### Chromatograms







| _  |                  |                   |              |
|----|------------------|-------------------|--------------|
| .) | Sodium hydroxide | eluent, standard, |              |
| )  | amperometric det | ection            | Conc. (µg/L) |
| Э  | 1 Cyanide        | 4.0               |              |
| )  |                  |                   |              |

| Ordering information        |            |
|-----------------------------|------------|
| Metrosep A Supp 1 - 250/4.6 | 6.1005.300 |
| Metrosep A Supp 1 Guard/4.6 | 6.1005.340 |

# Metrosep A Supp 1 HS - 50/4.6 (6.1005.350)

The Metrosep A Supp 1 HS - 50/4.6 permits the separation of standard anions in a very short time. The Metrosep A Supp 1 HS - 50/4.6 is also the column of choice for the determination of only a few anions in an uncomplicated sample matrix. For example, the analysis of phosphate as well as chloride and sulfate in cola beverages can be carried out in less than three minutes.

#### Applications

- Cl<sup>-</sup>, PO<sub>4</sub> <sup>3-</sup>, SO<sub>4</sub> <sup>2-</sup> in cola beverages
- Very rapid separation
- Standard anions in uncomplicated sample matrices

| Technical inf | ormation |
|---------------|----------|
|---------------|----------|

Temperature range

Capacity

Substrate Poly(styrene-codivinylbenzene) with quaternary ammonium groups Column dimensions 50 x 4.6 mm Column body PEEK Standard flow 1.3 mL/min Maximum flow 2.5 mL/min Maximum pressure 4.0 MPa Particle size 7 µm Organic modifier 0-100% 1-13 pH range

10-70 °C

3 μmol (Cl<sup>-</sup>)

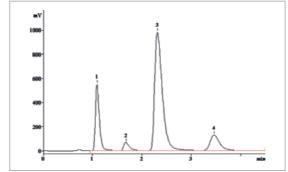
#### Eluents

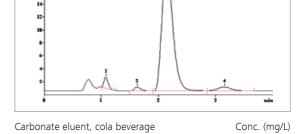
| Carbonate eluent  | Sodium carbonate | 636 mg/2 L | 3.0 mmol/L |
|-------------------|------------------|------------|------------|
| (standard eluent) |                  |            |            |

#### Care

a flow rate of 0.25 mL/min. Then rinse with 0.1 mol/L column in a refrigerator at minimum +4 °C. sodium hydroxide at 0.25 mL/min for 1 h.

#### Organic contaminants:


Rinse with 70% methanol at 0.4 mL/min for 12 h. The addition of 1% acetic acid may be useful.


#### Storage

Rinse with 15 mL of a 0.05 mol/L solution of Na<sub>a</sub>EDTA at In the eluent. For a longer period (weeks), store the



#### Chromatograms





496.3

10.4

| Carb | onate eluent, standa | ard  |   | Con       | c. (mg/L) | Carb | onate eluent, co | la beverage |   |         |
|------|----------------------|------|---|-----------|-----------|------|------------------|-------------|---|---------|
| 1    | Chloride             | 50.0 | 3 | Phosphate | 500.0     | 1    | Chloride         | 5.0         | 3 | Phosph  |
| 2    | Nitrate              | 20.0 | 4 | Sulfate   | 50.0      | 2    | Nitrate          | 8.2         | 4 | Sulfate |

| Ordering information          |            |
|-------------------------------|------------|
| Metrosep A Supp 1 HS - 50/4.6 | 6.1005.350 |
| Metrosep RP 2 Guard/3.5       | 6.1011.030 |
| Metrosep RP 3 Guard HC/4.0    | 6.1011.040 |

# Metrosep A Supp 3 - 250/4.6 (6.1005.320)

The Metrosep A Supp 3 - 250/4.6 solves separation problems in aqueous and organic media. It can be used reliably with a wide range of eluents – even those with high proportions of organic solvents. With the Metrosep A Supp 3 - 250/4.6, highly demanding samples can be analyzed in routine operation, for example the measurement of biological samples or the determination of inorganic anions in organic matrices. With the help of a sodium hydroxide gradient, polyphosphates can be reliably separated on the Metrosep A Supp 3 - 250/4.6. In isocratic operation, the column is also suitable for the separation of sulfite, sulfate, and thiosulfate in less than 20 minutes.

### Applications

- SCN<sup>-</sup>, SO<sub>3</sub><sup>2-</sup>, SO<sub>4</sub><sup>2-</sup>, S<sub>2</sub>O<sub>3</sub><sup>2-</sup>
- Polyphosphates
- Organic matrices

Substrate Poly(styrene-co-

divinylbenzene) with quaternary ammonium groups

Column dimensions 250 x 4.6 mm

PEEK

Column body Standard flow 1.0 mL/min

Maximum flow 1.5 mL/min 15 MPa Maximum pressure

Particle size 9 µm Organic modifier 0-100%

1-13

pH range Temperature range 10-70 °C

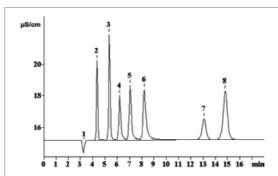
35 µmol (Cl<sup>-</sup>) Capacity

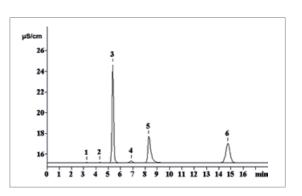
Eluent

1.7 mmol/L Carbonate eluent Sodium hydrogen carbonate 286 mg/2 L (standard eluent) Sodium carbonate 382 mg/2 L 1.8 mmol/L

#### Care

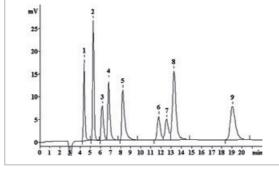
a flow rate of 0.5 mL/min. Then rinse with 0.1 mol/L column in a refrigerator at minimum +4 °C. sodium hydroxide at 0.5 mL/min for 1 h.


#### Organic contaminants:


Rinse with 70% methanol at 1.0 mL/min for 12 h. The addition of 1% acetic acid may be useful.

Rinse with 50 mL of a 0.05 mol/L solution of Na<sub>a</sub>EDTA at In the eluent. For a longer period (weeks), store the




### Chromatograms





| Carbonate eluent, standard |                |      |   | Conc.     | (mg/L) |
|----------------------------|----------------|------|---|-----------|--------|
| 1                          | Injection peak | _    | 5 | Bromide   | 10.00  |
| 2                          | Fluoride       | 2.00 | 6 | Nitrate   | 10.00  |
| 3                          | Chloride       | 5.00 | 7 | Phosphate | 10.00  |
| 4                          | Nitrite        | 5.00 | 8 | Sulfate   | 10.00  |





| Car | bonate eluent, st | andard |   | Con         | c. (mg/L) |
|-----|-------------------|--------|---|-------------|-----------|
| 1   | Fluoride          | 1.25   | 6 | Phosphate   | 5.00      |
| 2   | Chloride          | 2.50   | 7 | Sulfite     | 5.00      |
| 3   | Nitrite           | 2.50   | 8 | Sulfate     | 5.00      |
| 4   | Bromide           | 5.00   | 9 | Thiosulfate | 5.00      |
| 5   | Nitrate           | 5.00   |   |             |           |

| Ordering information        |            |
|-----------------------------|------------|
| Metrosep A Supp 3 - 250/4.6 | 6.1005.320 |
| Metrosep RP 2 Guard/3.5     | 6.1011.030 |
| Metrosep RP 3 Guard HC/4.0  | 6.1011.040 |

## Metrosep A Supp 5 - 50/4.0 (6.1006.550)

The Metrosep A Supp 5 - 50/4.0 separates the seven standard anions in less than six minutes. Even fluoride is still separated from the injection peak and can be integrated perfectly. Like all columns in the Metrosep-A-Supp-5 product range, the column, which is based on a polyvinyl alcohol polymer, is characterized by high plate numbers and therefore by outstanding separating efficiency. The Metrosep A Supp 5 - 50/4.0 is the column of choice when simple separation tasks must be solved in a short time – and that without having to sacrifice very low detection limits.

#### Applications

- Rapid separation of standard anions
- Simple sample matrices
- Method development

| Technical information |                             |
|-----------------------|-----------------------------|
| Substrate             | Polyvinyl alcohol with qua- |
|                       | ternary ammonium groups     |
| Column dimensions     | 50 x 4.0 mm                 |
| Column body           | PEEK                        |
| Standard flow         | 0.7 mL/min                  |
| Maximum flow          | 0.8 mL/min                  |
| Maximum pressure      | 15 MPa                      |
| Particle size         | 5 μm                        |
| Organic modifier      | 0–100%, (particularly       |
|                       | acetone, acetonitrile,      |
|                       | methanol)                   |
| pH range              | 3–12                        |
| Temperature range     | 20-60 °C                    |
| Capacity              | 17 μmol (Cl¯)               |

#### Eluent

| Carbonate eluent   | Sodium hydrogen carbonate | 168 mg/2 L  | 1.0 mmol/L  |
|--------------------|---------------------------|-------------|-------------|
| (standard eluent)  | Sodium carbonate          | 678 mg/2 L  | 3.2 mmol/L  |
| Perchlorate eluent | Sodium carbonate          | 3.178 g/2 L | 15.0 mmol/L |
|                    | Acetone                   | 200 mL/2 L  | 10%         |

#### Care

Regeneration

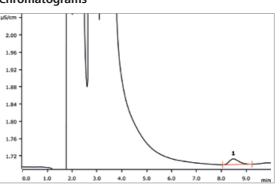
Contamination with hydrophilic ions:

- a) Rinse with ultrapure water (25 min at 0.3 mL/min) b) Rinse with 10x concentrated eluent (100 min at 0.3 mL/min)
- c) Rinse with ultrapure water (25 min at 0.3 mL/min) d) Rinse with eluent (100 min at 0.3 mL/min)

Contamination with lipophilic ions:

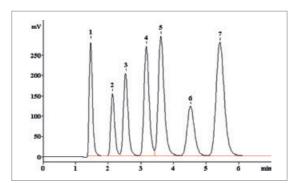
- a) Rinse with ultrapure water (25 min at 0.3 mL/min) b) Rinse with 5% acetonitrile (20 min at 0.3 mL/min)
- c) Rinse with 100% acetonitrile (60 min at 0.3 mL/min)
- d) Rinse with 50% acetonitrile (10 min at 0.3 mL/min)
- e) Rinse with ultrapure water (50 min at 0.3 mL/min)
- f) Rinse with eluent (100 min at 0.3 mL/min)

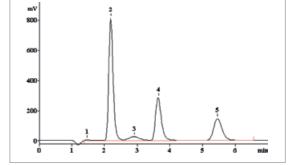
With shifted system peak (regeneration method with column oven):


- a) Rinse with 1 mol/L sodium carbonate (25 min at 0.4 mL/min)
- b) Maintain for 10–12 h at 45–50 °C (without rinsing) c) Rinse with eluent (at least 40 min at 0.4 mL/min)

Storage

In the eluent





#### Chromatograms



Perchlorate eluent, surface water 1 Perchlorate 13.4

Conc. (µg/L)





| Carbonate eluent, standard |          |       |   |  |  |  |
|----------------------------|----------|-------|---|--|--|--|
| 1                          | Fluoride | 2.00  | 5 |  |  |  |
| 2                          | Chloride | 5.00  | 6 |  |  |  |
| 3                          | Nitrite  | 5.00  | 7 |  |  |  |
| 4                          | Bromide  | 10.00 |   |  |  |  |

| Cor       | nc. (mg/L) |  |
|-----------|------------|--|
| Nitrate   | 10.00      |  |
| Phosphate | 10.00      |  |
| Sulfate   | 10.00      |  |
|           |            |  |

| Carl | bonate eluent, drin | king water |   |         | Conc. (mg/L) |
|------|---------------------|------------|---|---------|--------------|
| 1    | Fluoride            | 0.04       | 4 | Nitrate | 10.36        |
| 2    | Chloride            | 5.25       | 5 | Sulfate | 6.90         |
| 3    | System peak         | _          |   |         |              |

#### Ordering information

| Metrosep A Supp 5 - 50/4.0 6.100    | 6.550 |
|-------------------------------------|-------|
| Metrosep A Supp 5 Guard/4.0 6.100   | 6.500 |
| Metrosep A Supp 5 S-Guard/4.0 6.100 | 6.540 |

# Metrosep A Supp 5 - 100/4.0 (6.1006.510)

The Metrosep A Supp 5 - 100/4.0 allows highly efficient, rapid separations. This property makes the Metrosep A Supp 5 - 100/4.0 the standard column for short analysis times and the determination of late eluting anions (e.g. perchlorate).

#### Applications

Conductivity detection

- Standard anions
- F-, Cl-, Br-, I-, ClO<sub>2</sub>-, ClO<sub>3</sub>-, ClO<sub>4</sub>-, BrO<sub>3</sub>-
- CIO<sub>4</sub>
- Cr(VI) (CrO<sub>4</sub><sup>2-</sup>), I<sup>-</sup>
- Method development
- Universal applications
- Determination of phosphate in cola beverages
- Rapid separation

Amperometric detection

- NO<sub>2</sub>-, ClO<sub>2</sub>-
- S<sub>2</sub>O<sub>3</sub><sup>2-</sup>, SCN<sup>-</sup>, I<sup>-</sup>

| Technical information |                             |
|-----------------------|-----------------------------|
| Substrate             | Polyvinyl alcohol with qua- |
|                       | ternary ammonium groups     |
| Column dimensions     | 100 x 4.0 mm                |
| Column body           | PEEK                        |
| Standard flow         | 0.7 mL/min                  |
| Maximum flow          | 0.8 mL/min                  |
|                       |                             |

| Maximum pressure  | 15 MPa                     |
|-------------------|----------------------------|
| Particle size     | 5 μm                       |
| Organic modifier  | 0-100%, (particularly      |
|                   | acetone, acetonitrile,     |
|                   | methanol)                  |
| pH range          | 3–12                       |
| Temperature range | 20-60 °C                   |
| Capacity          | 34 μmol (Cl <sup>-</sup> ) |

#### Eluent

| Carbonate eluent  | Sodium hydrogen carbonate | 168 mg/2 L  | 1.0 mmol/L |
|-------------------|---------------------------|-------------|------------|
| (standard eluent) | Sodium carbonate          | 678 mg/2 L  | 3.2 mmol/L |
| Cola eluent       | Sodium hydrogen carbonate | 504 mg/2 L  | 3.0 mmol/L |
|                   | Sodium carbonate          | 1484 mg/2 L | 7.0 mmol/L |

#### Care

#### Regeneration

Contamination with hydrophilic ions:

- a) Rinse with ultrapure water (25 min at 0.3 mL/min)
- b) Rinse with 10x concentrated eluent (100 min at 0.3 mL/min)
- c) Rinse with ultrapure water (25 min at 0.3 mL/min) d) Rinse with eluent (100 min at 0.3 mL/min)

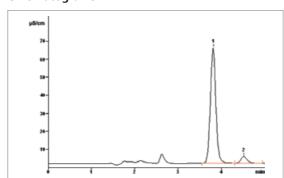
#### Contamination with lipophilic ions:

- a) Rinse with ultrapure water (25 min at 0.3 mL/min) b) Rinse with 5% acetonitrile (20 min at 0.3 mL/min)
- c) Rinse with 100% acetonitrile (60 min at 0.3 mL/min)
- d) Rinse with 50% acetonitrile (10 min at 0.3 mL/min)

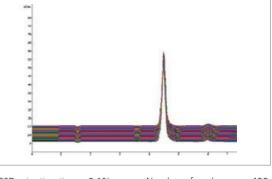
- e) Rinse with ultrapure water (50 min at 0.3 mL/min)
- f) Rinse with eluent (100 min at 0.3 mL/min)

With shifted system peak (regeneration method with column oven):

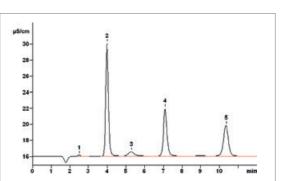
- a) Rinse with 1 mol/L sodium carbonate (25 min at 0.4 mL/min)
- b) Maintain for 10–12 h at 45–50 °C (without rinsing)
- c) Rinse with eluent (at least 40 min at 0.4 mL/min)


#### Storage

In the eluent




#### Chromatograms


1 Phosphate







RSD retention time < 0.1% Number of analyses n = 400RSD concentration < 0.2%



| Cark | oonate eluent, s | tandard |   | Cor       | ic. (mg/L) | Car | bonate eluent, dri | nking water |   |         | Conc. (mg/L) |
|------|------------------|---------|---|-----------|------------|-----|--------------------|-------------|---|---------|--------------|
| 1    | Fluoride         | 2.00    | 5 | Nitrate   | 10.00      | 1   | Fluoride           | 0.04        | 4 | Nitrate | 10.30        |
| 2    | Chloride         | 5.00    | 6 | Phosphate | 10.00      | 2   | Chloride           | 5.15        | 5 | Sulfate | 6.89         |
| 3    | Nitrite          | 5.00    | 7 | Sulfate   | 10.00      | 3   | System peak        | _           |   |         |              |
| 4    | Bromide          | 10.00   |   |           |            |     |                    |             | 1 |         |              |

| Ordering information          |            |
|-------------------------------|------------|
| Metrosep A Supp 5 - 100/4.0   | 6.1006.510 |
| Metrosep A Supp 5 Guard/4.0   | 6.1006.500 |
| Metrosep A Supp 5 S-Guard/4.0 | 6.1006.540 |

### Metrosep A Supp 5 - 150/4.0 (6.1006.520)

The 150 mm version of the Metrosep A Supp 5 is characterized by its very good separation properties. High plate numbers and excellent peak symmetries simplify working in the lower  $\mu g/L$  range. The particle size of 5 µm makes a decisive contribution to the separating efficiency of this column. The Metrosep A Supp 5 -150/4.0 offers the optimum combination of selectivity and capacity, with which even complex separation tasks can be solved within a short time. This characteristic makes the Metrosep A Supp 5 - 150/4.0 one of the best universally applicable standard IC columns.

#### Applications

- Standard anions
- F-, Cl-, Br-, I-
- ClO<sub>2</sub>-, ClO<sub>3</sub>-, ClO<sub>4</sub>-, BrO<sub>3</sub>-
- Cr(VI) (CrO<sub>4</sub><sup>2-</sup>)
- Method development
- Difficult matrices
- Difficult separation problems

Polyvinyl alcohol with qua-Substrate ternary ammonium groups

150 x 4.0 mm

Column dimensions Column body Standard flow 0.7 mL/min

Maximum flow 0.8 mL/min Maximum pressure 15 MPa Particle size 5 µm

Organic modifier 0-100% (particularly acetone, acetonitrile,

methanol)

pH range 3-12 Temperature range 20-60 °C Capacity 51 μmol (Cl<sup>-</sup>)

### Eluents

| Carbonate eluent  | Sodium hydrogen carbonate | 168 mg/2 L  | 1.0 mmol/L  |
|-------------------|---------------------------|-------------|-------------|
| (standard eluent) | Sodium carbonate          | 678 mg/2 L  | 3.2 mmol/L  |
| Chromate eluent   | Sodium hydrogen carbonate | 672 mg/2 L  | 4.0 mmol/L  |
|                   | Sodium carbonate          | 2714 mg/2 L | 12.8 mmol/L |

#### Care

#### Regeneration

Contamination with hydrophilic ions:

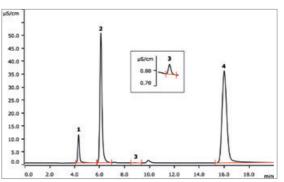
- a) Rinse with ultrapure water (25 min at 0.3 mL/min)
- b) Rinse with 10x concentrated eluent (100 min at 0.3 mL/min)
- c) Rinse with ultrapure water (25 min at 0.3 mL/min) d) Rinse with eluent (100 min at 0.3 mL/min)

#### Contamination with lipophilic ions:

- a) Rinse with ultrapure water (25 min at 0.3 mL/min) b) Rinse with 5% acetonitrile (20 min at 0.3 mL/min)
- c) Rinse with 100% acetonitrile (60 min at 0.3 mL/min)
- d) Rinse with 50% acetonitrile (10 min at 0.3 mL/min)

- e) Rinse with ultrapure water (50 min at 0.3 mL/min)
- f) Rinse with eluent (100 min at 0.3 mL/min)

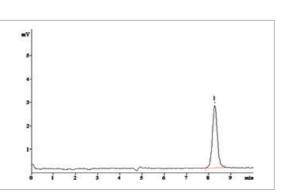
With shifted system peak (regeneration method with column oven):


- a) Rinse with 1 mol/L sodium carbonate (25 min at 0.4 mL/min)
- b) Maintain for 10–12 h at 45–50 °C (without rinsing)
- c) Rinse with eluent (at least 40 min at 0.4 mL/min)

### Storage

In the eluent




Bromide





2326 4 Sulfate

Chloride



10.00

| hromate eluent, lea           | ther extract,          |              |
|-------------------------------|------------------------|--------------|
| IS detection ( $\lambda = 54$ | 0 nm), inline dialysis | Conc. (µg/L) |
| Chromate                      | 19.0                   |              |

| Ordering information          |            |
|-------------------------------|------------|
| Metrosep A Supp 5 - 150/4.0   | 6.1006.520 |
| Metrosep A Supp 5 Guard/4.0   | 6.1006.500 |
| Metrosep A Supp 5 S-Guard/4.0 | 6.1006.540 |

2262

### Metrosep A Supp 5 - 250/4.0 (6.1006.530)

The high-performance separation column from Metrohm with an extremely high number of plates for the most demanding separation tasks. Even complex separation problems can be solved easily and reproducibly with the Metrosep A Supp 5 - 250/4.0. The high capacity of the column allows, for example, the detection of 1  $\mu$ g/L bromate along with 150 mg/L chloride without sample preparation. The range of applications possible with this column far exceeds the detection of standard anions. The Metrosep A Supp 5 - 250/4.0 is the column of choice when it comes to reliable monitoring of the high purity standards in the semiconductor industry or of the boiler feed water of power plants.

#### Applications

- Standard anions
- F-, Cl-, Br-, I-
- CIO<sub>2</sub>-, CIO<sub>3</sub>-, CIO<sub>4</sub>-, BrO<sub>3</sub>-
- ClO<sub>4</sub> at high ionic strength
- BrO<sub>3</sub> at high ionic strength
- Method development
- Universal applications
- Difficult matrices
- Difficult separation problems
- Applications with gradient

| Technical information |                             |
|-----------------------|-----------------------------|
| Substrate             | Polyvinyl alcohol with qua- |
|                       | ternary ammonium groups     |
| Column dimensions     | 250 x 4.0 mm                |
| Column body           | PEEK                        |
| Standard flow         | 0.7 mL/min                  |
| Maximum flow          | 0.8 mL/min                  |
| Maximum pressure      | 15 MPa                      |
|                       |                             |

Maximum pressure15 MPaParticle size5 μmOrganic modifier0–100%

0–100% (particularly acetone, acetonitrile,

methanol) 3–12

pH range 3–12 Temperature range 20–60 °C Capacity 85  $\mu$ mol (Cl $^-$ )

#### Eluent

| Carbonate eluent  | Sodium hydrogen carbonate | 168 mg/2 L | 1.0 mmol/L |
|-------------------|---------------------------|------------|------------|
| (standard eluent) | Sodium carbonate          | 678 mg/2 L | 3.2 mmol/L |

#### Care

Regeneration

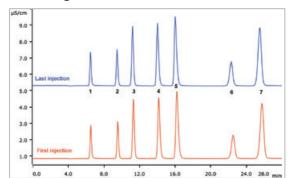
Contamination with hydrophilic ions:

- a) Rinse with ultrapure water (25 min at 0.3 mL/min)b) Rinse with 10x concentrated eluent (100 min at 0.3 mL/min)
- c) Rinse with ultrapure water (25 min at 0.3 mL/min) d) Rinse with eluent (100 min at 0.3 mL/min)

Contamination with lipophilic ions:

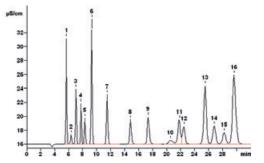
- a) Rinse with ultrapure water (25 min at 0.3 mL/min) b) Rinse with 5% acetonitrile (20 min at 0.3 mL/min) c) Rinse with 100% acetonitrile (60 min at 0.3 mL/min)
- d) Rinse with 50% acetonitrile (10 min at 0.3 mL/min)

- e) Rinse with ultrapure water (50 min at 0.3 mL/min)
- f) Rinse with eluent (100 min at 0.3 mL/min)

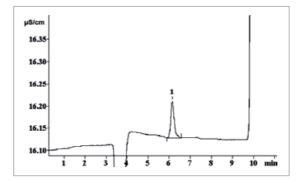

With shifted system peak (regeneration method with column oven):

- a) Rinse with 1 mol/L sodium carbonate (25 min at 0.4 mL/min)
- b) Maintain for 10–12 h at 45–50 °C (without rinsing)
- c) Rinse with eluent (at least 40 min at 0.4 mL/min)

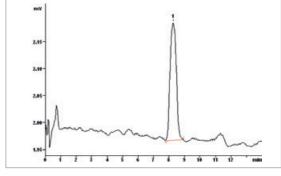
Storage


In the eluent






Carbonate eluent, first and last QC standard, Conc. (mg/L)


|     |              |       |   |           | _     |
|-----|--------------|-------|---|-----------|-------|
| 215 | 0 injections |       |   |           |       |
| 1   | Fluoride     | 1.00  | 5 | Nitrate   | 10.00 |
| 2   | Chloride     | 2.00  | 6 | Phosphate | 10.00 |
| 3   | Nitrite      | 5.00  | 7 | Sulfate   | 10.00 |
| 4   | Bromide      | 10.00 |   |           |       |



| Carbonate eluent, standard |          |       |    | Con       | c. (mg/L) |
|----------------------------|----------|-------|----|-----------|-----------|
| 1                          | Fluoride | 5.00  | 9  | Nitrate   | 4.00      |
| 2                          | Acetate  | 1.00  | 10 | Benzoate  | 1.00      |
| 3                          | Formate  | 4.00  | 11 | Phosphate | 5.00      |
| 4                          | Chlorite | 3.00  | 12 | Selenite  | 3.00      |
| 5                          | Bromate  | 2.00  | 13 | Sulfate   | 10.00     |
| 5                          | Chloride | 10.00 | 14 | Succinate | 4.00      |
| 7                          | Nitrite  | 5.00  | 15 | Arsenate  | 3.00      |
| 3                          | Bromide  | 3.00  | 16 | Oxalate   | 15.00     |
|                            |          |       |    |           |           |



Carbonate eluent, fluoride in HCl (32%) dil. 1:500 Conc. (µg/L) 1 Fluoride 20.0



Carbonate eluent, VIS detection ( $\lambda$  = 450 nm), EPA 317.0 1 Bromate 10.0

Conc. (µg/L)

| Ordoring | intormation |
|----------|-------------|
| Olucilla | information |
|          |             |

| Metrosep A Supp 5 - 250/4.0   | 6.1006.530 |
|-------------------------------|------------|
| Metrosep A Supp 5 Guard/4.0   | 6.1006.500 |
| Metrosep A Supp 5 S-Guard/4.0 | 6.1006.540 |

### Metrosep A Supp 7 - 150/4.0 (6.1006.620)

The Metrosep A Supp 7 - 150/4.0 is the shorter Metrosep A Supp 7 column. It allows similarly complex separation tasks to be solved the same way as with the 250 mm version, with no significant loss in separating efficiency. Chlorite and bromate can thus be easily separated from standard anions with this separation column. With the Metrosep A Supp 7 - 150/4.0, these ions are determined with certainty and precision down to the lower  $\mu$ g/L range. The high detection sensitivity is achieved through the use of the 5  $\mu$ m polyvinyl alcohol polymer, with which extremely high plate numbers and thus outstanding separation and detection properties are achieved. In addition, the separation can be adapted to the specific requirements of the application by modifying the temperature.

#### Applications

- Standard anions
- Determination of standard anions and ClO<sub>2</sub><sup>-</sup>,
   ClO<sub>3</sub><sup>-</sup>, BrO<sub>3</sub><sup>-</sup>
- Complex separation tasks
- Applications with gradient

Substrate Polyvinyl alcohol with quaternary ammonium groups

Column dimensions 150 x 4.0 mm

Column body PEEK
Standard flow 0.7 mL/min
Maximum flow 1.0 mL/min
Maximum pressure 15 MPa
Particle size 5 µm

Organic modifier 0–100% (particularly

acetone, acetonitrile,

methanol)

pH range 3–12
Temperature range 20–60 °C
Capacity 66 µmol (Cl<sup>-</sup>)

#### Eluent

Carbonate eluent Sodium carbonate (standard eluent)

763 mg/2 L

3.6 mmol/L

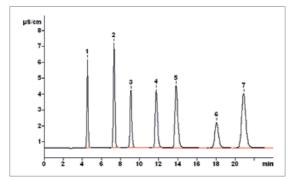
#### Care

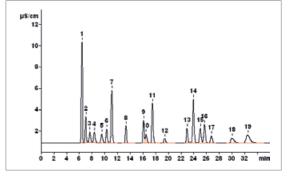
#### Regeneration

Contamination with low-valency hydrophilic ions:

- a) Rinse with ultrapure water (25 min at 0.3 mL/min) b) Rinse with 10x concentrated eluent (100 min at
- 0.3 mL/min)
- c) Rinse with ultrapure water (25 min at 0.3 mL/min) d) Rinse with eluent (100 min at 0.3 mL/min)

Contaminations with high-valency hydrophobic ions and organic contaminations:


- a) Rinse with ultrapure water (25 min at 0.3 mL/min)
- b) Rinse with 100% acetonitrile (20 min at 0.3 mL/min)
- c) Rinse with ultrapure water (25 min at 0.3 mL/min)
- d) Rinse with 10x concentrated eluent (100 min at 0.3 ml/min)
- e) Rinse with ultrapure water (25 min at 0.3 mL/min)
- f) Rinse with eluent (100 min at 0.3 mL/min)


#### Storage

In the eluent at max. 8 °C



#### Chromatograms





| Carbonate eluent, standard, 45 °C |          |       |   | Cor       | nc. (mg/L) |
|-----------------------------------|----------|-------|---|-----------|------------|
| 1                                 | Fluoride | 2.00  | 5 | Nitrate   | 10.00      |
| 2                                 | Chloride | 5.00  | 6 | Phosphate | 10.00      |
| 3                                 | Nitrite  | 5.00  | 7 | Sulfate   | 10.00      |
| 4                                 | Bromide  | 10.00 |   |           |            |

| Gradie | ent: Carbonate eluen | t 1–6 m | mol/L, |                |       |
|--------|----------------------|---------|--------|----------------|-------|
| stand  | ard, 45 °C           |         |        | Conc. (        | mg/L) |
| 1      | Fluoride             | 5.00    | 11     | Nitrate        | 5.00  |
| 2      | Glycolate            | 5.00    | 12     | Dibromoacetate | 5.00  |
| 3      | Propionate           | 5.00    | 13     | Phosphate      | 5.00  |
| 4      | Butyrate             | 5.00    | 14     | Sulfate        | 5.00  |
| 5      | Methacrylate         | 5.00    | 15     | Tartrate       | 5.00  |
| 6      | Monochloroace tate   | 5.00    | 16     | Selenate       | 5.00  |
| 7      | Chloride             | 5.00    | 17     | Arsenate       | 5.00  |
| 8      | Nitrite              | 5.00    | 18     | Iodide         | 5.00  |
| 9      | Bromide              | 5.00    | 19     | Thiosulfate    | 5.00  |
| 10     | Dichloroacetate      | 5.00    |        |                |       |

| Ordering information          |            |
|-------------------------------|------------|
| Metrosep A Supp 7 - 150/4.0   | 6.1006.620 |
| Metrosep A Supp 5 Guard/4.0   | 6.1006.500 |
| Metrosep A Supp 5 S-Guard/4.0 | 6.1006.540 |
| Metrosep RP 2 Guard/3.5       | 6.1011.030 |

### Metrosep A Supp 7 - 250/4.0 (6.1006.630)

Disinfection byproducts from water treatment are suspected not only of being health hazards, but even of being carcinogenic. Oxyhalides have therefore become the subject of many investigations and standards (e.g. EPA 300.1 Part A+B, EPA 317.0, EPA 326, DIN EN ISO 11206). Of primary concern is bromate, which forms from bromide during the ozonization of drinking water. The Metrosep A Supp 7 - 250/4.0 is a high-performance separation column for the parallel determination of standard anions, oxyhalides, and dichloroacetic acid. With this column, these ions are determined with certainty and precision down to the lower µg/L range. The high detection sensitivity is achieved through the use of the 5 µm polyvinyl alcohol polymer, with which extremely high plate numbers and thus outstanding separation and detection properties are achieved. In addition, the separation can be adapted to the specific requirements of the application by modifying the temperature.

#### Applications

- Standard anions
- EPA Method 300.1 Part A+B, simultaneous determination of standard anions and  $CIO_2^-$ ,  $CIO_3^-$ ,  $BrO_3^-$  and DCAA (dichloroacetic acid)
- Isocratic separation of glycolate, acetate, and formate
- Complex separation tasks
- Applications with gradient

Substrate Polyvinyl alcohol with quaternary ammonium groups
Column dimensions 250 x 4.0 mm
Column body PEEK
Standard flow 0.7 mL/min
Maximum flow 1.0 mL/min
Maximum pressure 15 MPa

Particle size  $5 \mu m$  Organic modifier 0-100% (particularly

acetone, acetonitrile, methanol)

pH range 3–12
Temperature range 20–60 °C
Capacity 110 μmol (CΓ)

#### Eluent

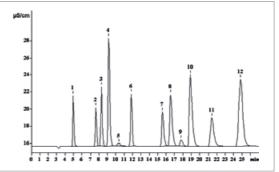
| Carbonate eluent  | Sodium carbonate | 763 mg/2 L | 3.6 mmol/L |  |
|-------------------|------------------|------------|------------|--|
| (standard eluent) |                  |            |            |  |
| Carbonate eluent  | Sodium carbonate | 763 mg/2 L | 3.6 mmol/L |  |
| (modified)        | Acetone          | 40 mL/2 L  | 2%         |  |

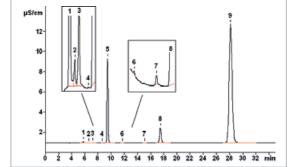
#### Care

#### Regeneration

Contamination with low-valency hydrophilic ions:
a) Rinse with ultrapure water (25 min at 0.3 mL/min)
b) Rinse with 10x concentrated eluent (100 min at 0.3 mL/min)

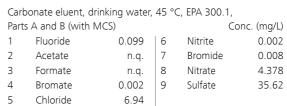
c) Rinse with ultrapure water (25 min at 0.3 mL/min) d) Rinse with eluent (100 min at 0.3 mL/min)

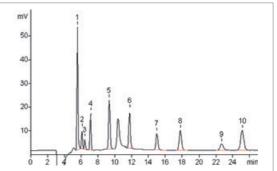

Contaminations with high-valency hydrophobic ions and organic contaminations:

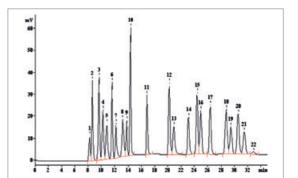

- a) Rinse with ultrapure water (25 min at 0.3 mL/min)
- b) Rinse with 100% acetonitrile (20 min at 0.3 mL/min) c) Rinse with ultrapure water (25 min at 0.3 mL/min)
- d) Rinse with 10x concentrated eluent (100 min at
- 0.3 mL/min) e) Rinse with ultrapure water (25 min at 0.3 mL/min)
- f) Rinse with eluent (100 min at 0.3 mL/min)

In the eluent at max. 8 °C

Storage

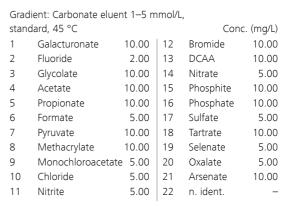

#### Chromatograms

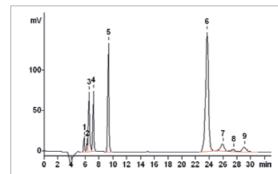



Carbonate eluent, standard, 45 °C, EPA 300.1,

| Parts A and B (without MCS) |             |       |    | Conc      | . (mg/L) |
|-----------------------------|-------------|-------|----|-----------|----------|
| 1                           | Fluoride    | 2.00  | 7  | Bromide   | 10.00    |
| 2                           | Chlorite    | 10.00 | 8  | Chlorate  | 20.00    |
| 3                           | Bromate     | 20.00 | 9  | DCAA      | 5.00     |
| 4                           | Chloride    | 3.00  | 10 | Nitrate   | 10.00    |
| 5                           | System peak | -     | 11 | Phosphate | 20.00    |
| 6                           | Nitrite     | 10.00 | 12 | Sulfate   | 15.00    |
|                             |             |       | 1  |           |          |






Carbonate eluent, nuclear power plant,

| secor | ndary circuit (simulat | ted), 45 ° | C  |           | ionc. (µg/L |
|-------|------------------------|------------|----|-----------|-------------|
| 1     | Fluoride               | 2.04       | 6  | Nitrite   | 2.26        |
| 2     | Glycolate              | 2.05       | 7  | Bromide   | 2.06        |
| 3     | Acetate                | 4.14       | 8  | Nitrate   | 2.12        |
| 4     | Formate                | 2.04       | 9  | Phosphate | 1.91        |
| 5     | Chloride               | 2.09       | 10 | Sulfate   | 2.18        |
|       |                        |            | 1  |           |             |





| Carbonate | aluant   | mod 1    | "Ray   | or liquor»  |
|-----------|----------|----------|--------|-------------|
| Carbonate | eiueiii, | IIIOU. I | , «Dal | ver ilquor» |

| after | inline neutralization | 3    | 35 °C | Conc.     | (mg/L) |
|-------|-----------------------|------|-------|-----------|--------|
| 1     | Fluoride              | 0.35 | 6     | Sulfate   | 22.59  |
| 3     | Acetate               | 9.13 | 7     | Malonate  | 3.87   |
| 4     | Formate               | 3.71 | 8     | Succinate | 1.93   |
| 5     | Chloride              | 5.66 | 9     | Oxalate   | 2.07   |
|       |                       |      | 1     |           |        |

### Ordering information

| 6.1006.630 |
|------------|
| 6.1006.500 |
| 6.1006.540 |
| 6.1031.500 |
| 6.1031.510 |
| 6.1011.030 |
|            |

## Metrosep A Supp 10 - 50/4.0 (6.1020.050)

The Metrosep A Supp 10 - 50/4.0 separation column is based on a high-capacity Poly(styrene-co-divinylbenzene) copolymer with a particle size of only 4.6  $\mu$ m. This proven column concept optimized by Metrohm is characterized by its robust construction, high selectivity, and outstanding separating efficiency. High plate numbers and the favorable position of the system peak between fluoride and chloride complete its properties. Temperature, flow, and eluent composition can be used to modify the properties of the column to accommodate current applications directly.

The short length in conjunction with the relatively low overall capacity of this 50 mm column enable rapid separations of standard anions. They can be determined in less than nine minutes at a flow rate of 1.0 mL/min. The Metrosep A Supp 10 - 50/4.0 is well-suited to simple separation problems and uncomplicated matrices.

#### Applications

- Standard anions
- Separation of azide and nitrate
- Simple separation problems
- Uncomplicated matrices
- Short analysis times

| Technical information |                           |
|-----------------------|---------------------------|
| Substrate             | Poly(styrene-co-          |
|                       | divinylbenzene) with qua- |
|                       | ternary ammonium groups   |
| Column dimensions     | 50 x 4.0 mm               |
| Column body           | PEEK                      |
| Standard flow         | 1.0 mL/min                |
| Maximum flow          | 2.0 mL/min                |
| Maximum pressure      | 25 MPa                    |
| Particle size         | 4.6 µm                    |
| Organic modifier      | 0-100%                    |
| pH range              | 0-14                      |
| Temperature range     | 10-70 °C                  |

20 μmol (Cl<sup>-</sup>)

#### Eluent

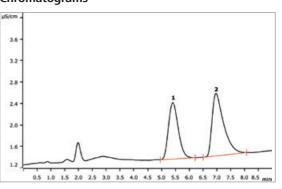
| Carbonate eluent  | Sodium hydrogen carbonate | 840 mg/2 L  | 5.0 mmol/L |
|-------------------|---------------------------|-------------|------------|
| (standard eluent) | Sodium carbonate          | 1060 mg/2 L | 5.0 mmol/L |
| Hydroxide eluent  | Sodium hydroxide (30%)    | 20 mL/2 L   | 100 mmol/L |

Capacity

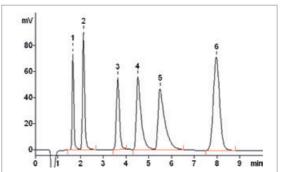
#### Care

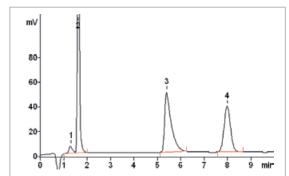
Regeneration

Rinse with 50 mL of a 0.05 mol/L solution of  $Na_4EDTA$  at  $\$ In the eluent a flow rate of 0.5 mL/min. Then rinse with 0.1 mol/L  $\$ NaOH at 0.5 mL/min for 1 h.


Organic contaminants:

Rinse with 70% methanol at 1.0 mL/min for 12 h. The addition of 1% acetic acid may be useful.


storage




#### Chromatograms



Hydroxide eluent, standard Conc. (mg/L 1 Azide 1.0 | 2 Nitrate 1.0





| Carbonate eluent, standard, 45 °C, |           |       |   |         | Conc. (mg/L) |
|------------------------------------|-----------|-------|---|---------|--------------|
| 1                                  | Chloride  | 5.00  | 4 | Bromide | 10.00        |
| 2                                  | Nitrite   | 5.00  | 5 | Nitrate | 10.00        |
| 3                                  | Phosphate | 10.00 | 6 | Sulfate | 10.00        |

| Carbonate eluent, drinking water, 45 °C |             |       | С | Conc. (mg/L) |      |
|-----------------------------------------|-------------|-------|---|--------------|------|
| 1                                       | System peak | _     | 3 | Nitrate      | 9.64 |
| 2                                       | Chloride    | 10.05 | 4 | Sulfate      | 5.19 |

| Ordering information           |            |
|--------------------------------|------------|
| Metrosep A Supp 10 - 50/4.0    | 6.1020.050 |
| Metrosep A Supp 10 Guard/4.0   | 6.1020.500 |
| Metrosep A Supp 10 S-Guard/4.0 | 6.1020.510 |

# Metrosep A Supp 10 - 75/4.0 (6.1020.070)

The Metrosep A Supp 10 - 75/4.0 separation column is based on a high-capacity poly(styrene-co-divinylbenzene) copolymer with a particle size of only 4.6 µm. Under standard conditions, phosphate elutes between nitrite and bromide. Applications can be optimized by modifying temperature, composition of the eluent and flow.

The capacity of the Metrosep A Supp 10 - 75/4.0 has been optimized with respect to two aspects: matrix and speed. Baseline separation is achieved in samples with high ionic strength, e.g. for phosphate in cola beverages. Even in the presence of large quantities of nitrate and sulfate, the analysis time remains less than 7.5 minutes. High sample throughput is also of great importance in air analytics.

#### Applications

- Standard anions
- Air monitoring
- Aerosols with MARS/MARGA
- Separation of sulfite and sulfate
- Phosphate in addition to cyclamate in cola beverages

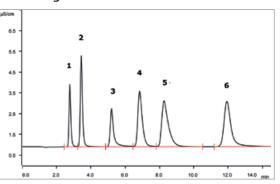
| Technical information |                            |
|-----------------------|----------------------------|
| Substrate             | Poly(styrene-co-           |
|                       | divinylbenzene)with qua-   |
|                       | ternary ammonium groups    |
| Column dimensions     | 75 x 4.0 mm                |
| Column body           | PEEK                       |
| Standard flow         | 1.0 mL/min                 |
| Maximum flow          | 2.0 mL/min                 |
| Maximum pressure      | 25 MPa                     |
| Particle size         | 4.6 μm                     |
| Organic modifier      | 0-100%                     |
| pH range              | 0-14                       |
| Temperature range     | 10-70 °C                   |
| Capacity              | 30 µmol (Cl <sup>-</sup> ) |
|                       |                            |

#### Eluent

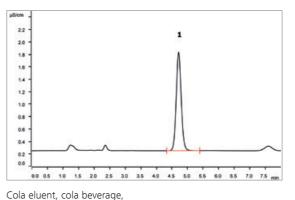
| Carbonate eluent  | Sodium hydrogen carbonate | 840 mg/2 L  | 5.0 mmol/L |  |
|-------------------|---------------------------|-------------|------------|--|
| (standard eluent) | Sodium carbonate          | 1060 mg/2 L | 5.0 mmol/L |  |
| Cola eluent       | Sodium hydrogen carbonate | 67 mg/2 L   | 0.4 mmol/L |  |
|                   | Sodium carbonate          | 1695 mg/2 L | 8.0 mmol/L |  |

#### Care

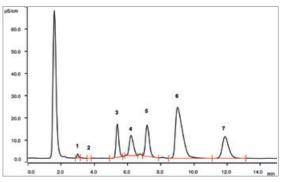
#### Regeneration


Rinse with 50 mL of a 0.05 mol/L solution of  $Na_aEDTA$  at Rinse with 70% methanol at 1.0 mL/min for 12 h. The a flow rate of 0.5 mL/min. Then rinse with 0.1 mol/L addition of 1% acetic acid may be useful. NaOH at 0.5 mL/min for 1 h.

#### Organic contaminants:


Storage In the eluent




#### Chromatograms



| Carbonate eluent, standard, 45 °C, Conc. (mg/L) |           |       |   |         |       |  |
|-------------------------------------------------|-----------|-------|---|---------|-------|--|
| 1                                               | Chloride  | 2.00  | 4 | Bromide | 10.00 |  |
| 2                                               | Nitrite   | 5.00  | 5 | Nitrate | 10.00 |  |
| 3                                               | Phosphate | 10.00 | 6 | Sulfate | 10.00 |  |
|                                                 |           |       |   |         |       |  |



sample volume 250 nL, 30 °C Conc. (mg/L) 1 Phosphate



| Wine eluent, temperature 45 °C, Conc. (mg/L) |            |             |   |         |               |
|----------------------------------------------|------------|-------------|---|---------|---------------|
|                                              |            | atule 45 C, |   |         | Coric. (mg/L) |
| flow                                         | 1.0 mL/min |             |   |         |               |
| 1                                            | Chloride   | 12.4        | 5 | Sulfite | 630.55        |
| 2                                            | Nitrite    | 0.82        | 6 | Nitrate | 982.34        |
| 3                                            | Phosphate  | 496.38      | 7 | Sulfate | 291.40        |
| 4                                            | Unknown    | _           |   |         |               |
|                                              |            |             |   |         |               |

67

| Ordering information            |            |
|---------------------------------|------------|
| Metrosep A Supp 10 - 75/4.0     | 6.1020.070 |
| Metrosep A Supp 10 Guard/4.0    | 6.1020.500 |
| Metrosep A Supp 10 S-Guard/4.0  | 6.1020.510 |
| Metrosep A Supp 10 Guard HC/4.0 | 6.1020.520 |

# Metrosep A Supp 10 - 100/4.0 (6.1020.010)

The Metrosep A Supp 10 - 100/4.0 separation column is based on a high-capacity poly(styrene-co-divinylbenzene) copolymer with a particle size of only 4.6 µm. This column is characterized by high plate numbers and high selectivity. Sulfite and sulfate thus can be reliably separated in the eluent without the addition of organic modifiers. These characteristics are completed by great flexibility with respect to column temperature, flow, and the composition of the eluent.

The robust construction, excellent price-performance ratio, and very good separating efficiency, in conjunction with moderate chromatography times, make the Metrosep A Supp 10 - 100/4.0 an universally applicable anion separation column.

#### Applications

- Standard anions
- Separation of sulfite and sulfate
- Simple separation problems
- Uncomplicated matrices

| Technical information |                            |
|-----------------------|----------------------------|
| Substrate             | Poly(styrene-co-           |
|                       | divinylbenzene) with qua-  |
|                       | ternary ammonium groups    |
| Column dimensions     | 100 x 4.0 mm               |
| Column body           | PEEK                       |
| Standard flow         | 1.0 mL/min                 |
| Maximum flow          | 2.0 mL/min                 |
| Maximum pressure      | 25 MPa                     |
| Particle size         | 4.6 µm                     |
| Organic modifier      | 0-100%                     |
| pH range              | 0-14                       |
| Temperature range     | 10-70 °C                   |
| Capacity              | 40 μmol (Cl <sup>-</sup> ) |
|                       |                            |

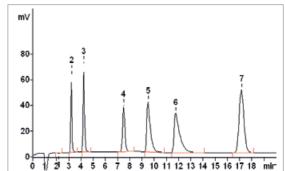
#### Eluent

| Carbonate eluent  | Sodium hydrogen carbonate | 840 mg/2 L  | 5.0 mmol/L |
|-------------------|---------------------------|-------------|------------|
| (standard eluent) | Sodium carbonate          | 1060 mg/2 L | 5.0 mmol/L |
| Carbonate eluent  | Sodium hydrogen carbonate | 672 mg/2 L  | 4.0 mmol/L |
| (modified)        | Sodium carbonate          | 1272 mg/2 L | 6.0 mmol/L |
|                   | Sodium perchlorate        | 1.2 mg/2 L  | 5.0 µmol/L |

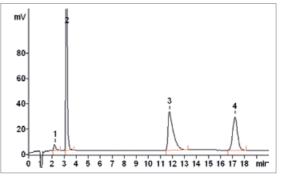
#### Care

Regeneration

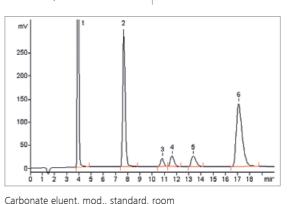
a flow rate of 0.5 mL/min. Then rinse with 0.1 mol/L addition of 1% acetic acid may be useful. NaOH at 0.5 mL/min for 1 h.


Organic contaminants:

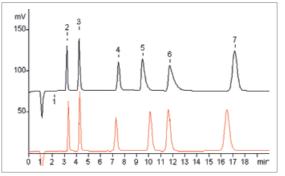
Rinse with 50 mL of a 0.05 mol/L solution of Na<sub>a</sub>EDTA at Rinse with 70% methanol at 1.0 mL/min for 12 h. The

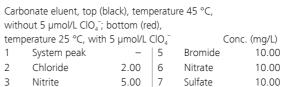

Storage In the eluent




### Chromatograms

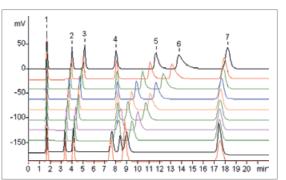



| Carbo | nate eluent, standa | Conc. (mg/L) |   |         |       |
|-------|---------------------|--------------|---|---------|-------|
| 1     | System peak         | -            | 5 | Bromide | 10.00 |
| 2     | Chloride            | 5.00         | 6 | Nitrate | 10.00 |
| 3     | Nitrite             | 5.00         | 7 | Sulfate | 10.00 |
| 4     | Phosphate           | 10.00        |   |         |       |




| Carbonate eluent, drinking water, 45 °C |             |       |   |         | Conc. (mg/L) |
|-----------------------------------------|-------------|-------|---|---------|--------------|
| 1                                       | System peak | _     | 3 | Nitrate | 9.64         |
| 2                                       | Chloride    | 10.05 | 4 | Sulfate | 5.19         |




| aibc | mate eluent, mou., | stariuaru, | 100111 |         |              |
|------|--------------------|------------|--------|---------|--------------|
| emp  | erature            |            |        |         | Conc. (mg/L) |
|      | Chloride           | 50.00      | 4      | Bromide | 10.00        |
|      | Phosphate          | 10.00      | 5      | Nitrate | 10.00        |
|      | Sulfite            | 10.00      | 6      | Sulfate | 50.00        |
|      |                    |            | 1      |         |              |





10.00

Phosphate



|    | Carbonate eluent, temperature 3070 ° C in 5 °C increments |              |       |   |         |       |
|----|-----------------------------------------------------------|--------------|-------|---|---------|-------|
|    | (fron                                                     | Conc. (mg/L) |       |   |         |       |
| .) | 1                                                         | Fluoride     | 2.00  | 5 | Bromide | 10.00 |
| 0  | 2                                                         | Chloride     | 2.00  | 6 | Nitrate | 10.00 |
| 0  | 3                                                         | Nitrite      | 5.00  | 7 | Sulfate | 10.00 |
| 0  | 4                                                         | Phosphate    | 10.00 |   |         |       |
|    |                                                           |              |       |   |         |       |

| Ordering information            |            |
|---------------------------------|------------|
| Metrosep A Supp 10 - 100/4.0    | 6.1020.010 |
| Metrosep A Supp 10 Guard/4.0    | 6.1020.500 |
| Metrosep A Supp 10 S-Guard/4.0  | 6.1020.510 |
| Metrosep A Supp 10 Guard HC/4.0 | 6.1020.520 |

### Metrosep A Supp 10 - 250/4.0 (6.1020.030)

The Metrosep A Supp 10 - 250/4.0 separation column is based on a high-capacity poly(styrene-co-divinylbenzene) copolymer with a particle size of only 4.6  $\mu m$ . The longest column of the Metrosep A Supp 10 product range offers the greatest selectivity and flexibility. Utilization of the MSM-HC is particularly recommended with longer chromatogram duration. Changes in temperature, flow, and composition of the eluent also enable a wide variety of separations of anions on this separation column.

Metrosep A Supp 10 - 250/4.0 has a very high capacity. It is suitable for samples with high ionic strength, for complex separation tasks and for analyzing samples in which great differences in concentration between the individual components are present.

#### Applications

- Standard anions
- Complex separation problems
- Difficult matrices
- Anions in concentrated acids
- Aggressive matrices

| Te | ecl | hn | ical | information |
|----|-----|----|------|-------------|
| _  |     |    |      |             |

strate Poly(styrene-codivinylbenzene)with qua-

ternary ammonium groups

Column dimensions 250 x 4.0 mm

Column body PEEK
Standard flow 1.0 mL/min
Maximum flow 2.0 mL/min

 $\begin{array}{ll} \text{Maximum pressure} & 25 \text{ MPa} \\ \text{Particle size} & 4.6 \text{ } \mu\text{m} \\ \text{Organic modifier} & 0-100\% \end{array}$ 

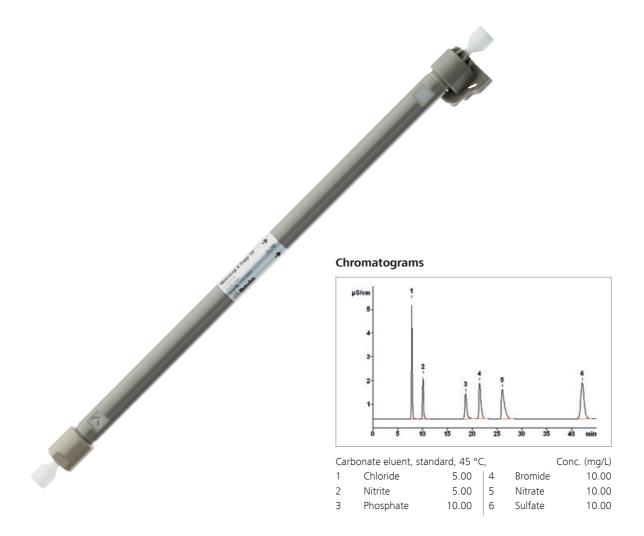
pH range 0–14 Temperature range 10–70 °C Capacity 100  $\mu$ mol (Cl<sup>-</sup>)

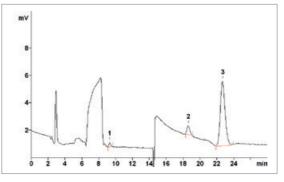
#### Eluent

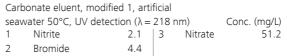
| Carbonate eluent  | Sodium hydrogen carbonate | 840 mg/2 L  | 5.0 mmol/L |
|-------------------|---------------------------|-------------|------------|
| (standard eluent) | Sodium carbonate          | 1060 mg/2 L | 5.0 mmol/L |
| Carbonate eluent  | Sodium hydrogen carbonate | 840 mg/2 L  | 5.0 mmol/L |
| (modified 1)      | Sodium carbonate          | 1060 mg/2 L | 5.0 mmol/L |
|                   | Acetone                   | 50 mL       | 2.5%       |
| Carbonate eluent  | Sodium hydrogen carbonate | 672 mg/2 L  | 4.0 mmol/L |
| (modified 2)      | Sodium carbonate          | 1272 mg/2 L | 6.0 mmol/L |

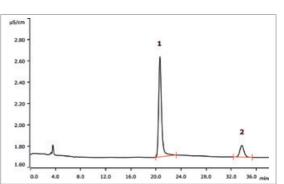
#### Care

Regeneration


Column purification:


Rinse with 50 mL of a 0.05 mol/L solution of  $Na_4EDTA$  at a flow rate of 0.5 mL/min. Then rinse with 0.1 mol/L NaOH at 0.5 mL/min for 1 h.


Organic contaminants:


Rinse with 70% methanol at 1.0 mL/min for 12 h. The addition of 1% acetic acid may be useful.

Storage In the eluent









Carbonate eluent, modified 2, ointment based on glycol, 45 °C Conc. (mg/kg)

1 Sulfite 1028° 2 Sulfat n.q. (from metabisulfite)

\*calculated as metabisulfite

71

| Ordering information            |            |
|---------------------------------|------------|
| Metrosep A Supp 10 - 250/4.0    | 6.1020.030 |
| Metrosep A Supp 10 Guard/4.0    | 6.1020.500 |
| Metrosep A Supp 10 S-Guard/4.0  | 6.1020.510 |
| Metrosep A Supp 10 Guard HC/4.0 | 6.1020.520 |

### Metrosep A Supp 16 - 100/4.0 (6.1031.410)

The Metrosep A Supp 16 is a high-capacity separation column based on a surface-functionalized poly(styrene-co-divinylbenzene) copolymer. The functional groups are bonded covalently. The morphology of the anion exchanger results in unique selectivity. In addition, this column type is noteworthy for its high mechanical and chemical resistance.

The column is well-suited to applications with a high ionic load but which require only relatively low resolution. Determination of bromate in water by means of the triiodide method (EPA 326, DIN EN ISO 11206) is another of the numerous applications of the Metrosep A Supp 16 - 100/4.0.

### Applications

- Standard anions
- Universal applications
- Bromate (EPA 326, DIN EN ISO 11206)

| Technical inform | nation |
|------------------|--------|
|------------------|--------|

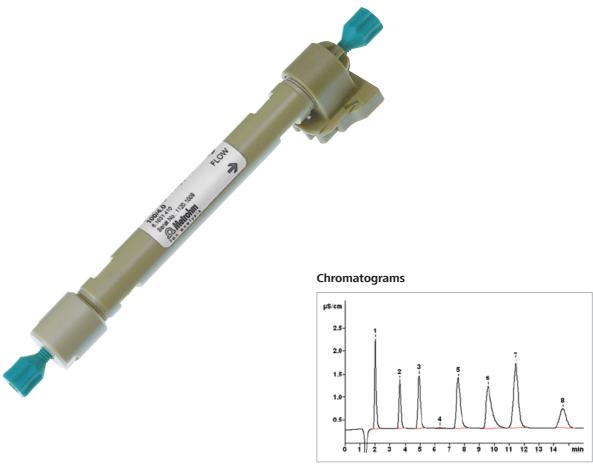
Substrate Poly(styrene-codivinylbenzene) with quaternary ammonium groups Column dimensions 100 x 4.0 mm Column body PEEK Standard flow 0.8 mL/min Maximum flow 1.2 mL/min Maximum pressure 20 MPa Particle size 4.6 µm Organic modifier 0-10% pH range 0-13 Temperature range 10-70 °C Capacity 78 µmol (Cl<sup>-</sup>)

### Eluent

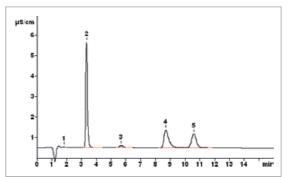
| Carbonate/hydroxide eluent | Sodium carbonate            | 1590 mg/2 L | 7.5 mmol/L  |
|----------------------------|-----------------------------|-------------|-------------|
| (standard eluent)          | Sodium hydroxide            | 6.0 mL/2 L  | 0.75 mmol/L |
|                            | (c = 0.25  mol/L)           |             |             |
| Sulfuric acid eluent       | Sulfuric acid (c = 1 mol/L) | 200 mL/2 L  | 100 mmol/L  |
|                            | Ammonium heptamolybdate     | 19.3 mL/2 L | 19.3 μmol/L |
|                            | (c = 2  mmol/L)             |             |             |
| PCR reagent                | Potassium iodide            | 90 g/2 L    | 0.27 mol/L  |

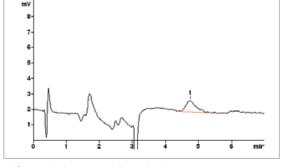
### Care

### Regeneration


Rinse the column overnight (12 h) with standard eluent at a low flow rate (0.4 mL/min).

Rinse the column with one third of the standard flow in the opposite direction for 2 h with 15 mmol/L  $\rm Na_2CO_3$  and then for 2 h with ultrapure water.


### Eluent change


When installing or changing to eluents which have an organic modifier to avoid high backpressure, adjust the flow in small increments from 0.4 mL/min to match standard conditions within one hour while maintaining the direction of flow.

Storage In the eluent



| Carbo | onate/hydroxide elue | nt, stand | dard, | 45 °C    | Conc. (mg/L |
|-------|----------------------|-----------|-------|----------|-------------|
| 1     | Fluoride             | 2.00      | 5     | Bromide  | 10.00       |
| 2     | Chloride             | 2.00      | 6     | Nitrate  | 10.00       |
| 3     | Nitrite              | 5.00      | 7     | Sulfate  | 10.00       |
| 4     | System peak          | _         | 8     | Phosphat | e 10.00     |
|       |                      |           |       |          |             |





| Carbo | onate/hydroxide el | uent, drin | king w | ater, 45 °C | Conc. (mg/L) |
|-------|--------------------|------------|--------|-------------|--------------|
| 1     | Fluorida           |            | 1 4    | Nitrata     | 0.7          |

| Fluoride    | n.q. | 4 | Nitrate | 9.7  |
|-------------|------|---|---------|------|
| Chloride    | 9.2  | 5 | Sulfate | 10.2 |
| System neak | _    |   |         |      |

| Sulfu | iric acid eluent, | triiodide method         |              |
|-------|-------------------|--------------------------|--------------|
| with  | UV/VIS detection  | on drinking water, 45 °C | Conc. (µg/L) |
| 1     | Bromate           | 0.6                      |              |

### Ordering information

| Metrosep A Supp 16 - 100/4.0   | 6.1031.410 |
|--------------------------------|------------|
| Metrosep A Supp 16 Guard/4.0   | 6.1031.500 |
| Metrosep A Supp 16 S-Guard/4.0 | 6.1031.510 |

### Metrosep A Supp 16 - 150/4.0 (6.1031.420)

The Metrosep A Supp 16 is ideal for high-capacity separation problems and excels in its outstanding resolution. The Metrosep A Supp 16 - 150/4.0 is based on a surface-functionalized poly(styrene-co-divinylbenzene) copolymer. The functional groups are bonded covalently.

The Metrosep A Supp 16 - 150/4.0 is characterized by outstanding resolution and solves difficult separation problems. The column is well-suited to applications with a high ionic load but which do not require the highest resolution. It is one of the standard columns in anion chromatography.

### Applications

- Standard anions
- Universal applications
- Azide/nitrate separation
- Matrices with high ionic strength
- Applications with gradient

ubstrate Poly(styrene-codivinylbenzene) with qua-

ternary ammonium groups

Column dimensions 150 x 4.0 mm

Column body PEEK Standard flow 0.8 mL/min 1.2 mL/min Maximum flow Maximum pressure 20 MPa Particle size 4.6 µm Organic modifier 0-10% pH range 0-13 Temperature range 10-70 °C 117 μmol (Cl<sup>-</sup>) Capacity

#### Eluent

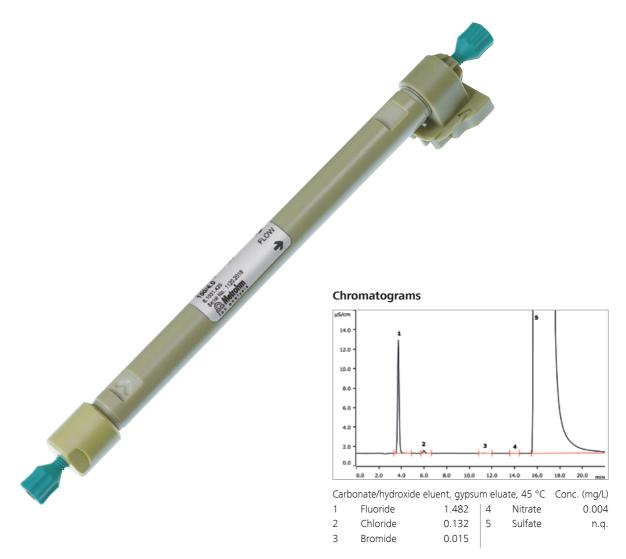
Carbonate/hydroxide eluent Sodium carbonate (standard eluent) Sodium hydroxide (c = 0.25 mol/L)

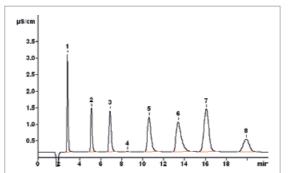
1590 mg/2 L 6.0 mL/2 L 7.5 mmol/L 0.75 mmol/L

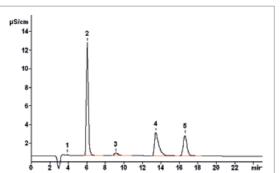
### Care

Regeneration

Rinse the column overnight (12 h) with standard eluent at a low flow rate (0.4 mL/min).


Rinse the column with one third of the standard flow in the opposite direction for 2 h with 15 mmol/L  $Na_2CO_3$  and then for 2 h with ultrapure water.


Eluent change


When installing or changing to eluents which have an organic modifier to avoid high backpressure, adjust the flow in small increments from 0.4 mL/min to match standard conditions within one hour while maintaining the direction of flow.

Storage

In the eluent







| Carbonate/hydroxide eluent, standard, 45 °C Conc. (mg/L) |             |      |   |           |         |
|----------------------------------------------------------|-------------|------|---|-----------|---------|
| 1                                                        | Fluoride    | 2.00 | 5 | Bromide   | 10.00   |
| 2                                                        | Chloride    | 2.00 | 6 | Nitrate   | 10.00   |
| 3                                                        | Nitrite     | 5.00 | 7 | Sulfate   | 10.00   |
| 4                                                        | System peak | _    | 8 | Phosphate | e 10.00 |

| Carl | bonate/hydroxide el | luent, drinkir | ng w | ater, 45 °C | Conc. (mg/L) |
|------|---------------------|----------------|------|-------------|--------------|
| 1    | Fluoride            | n.q.           | 4    | Nitrate     | 9.7          |
| 2    | Chloride            | 9.2            | 5    | Sulfate     | 10.2         |
| 3    | System peak         | _              |      |             |              |

| Ordering information           |            |
|--------------------------------|------------|
| Metrosep A Supp 16 - 150/4.0   | 6.1031.420 |
| Metrosep A Supp 16 Guard/4.0   | 6.1031.500 |
| Metrosep A Supp 16 S-Guard/4.0 | 6.1031.510 |

### Metrosep A Supp 16 - 250/4.0 (6.1031.430)

The Metrosep A Supp 16 is ideal for high-capacity separation problems and distinguishes itself with its outstanding resolution, even in complex separation problems. The Metrosep A Supp 16 separation column is based on a surface-functionalized poly(styrene-co-divinylbenzene) copolymer. The functional groups are bonded covalently. This and the surface structure of the anion exchanger results in unique selectivity. The high-capacity Metrosep A Supp 16 is used for solving complex problems.

The Metrosep A Supp 16 - 250/4.0 is characterized by outstanding resolution and solves the most difficult separation problems. The column is very well-suited to monitoring electroplating baths. Traces of anions can be determined in concentrated acids. Utilization in food analysis for the determination of maltose derivatives is only one more of the numerous applications of the high-capacity Metrosep A Supp 16 - 250/4.0.

### Applications

- Standard anions
- Universal applications
- Oligosaccharides and polysaccharides
- Separation of organic acids
- Cl<sup>-</sup>, SO<sub>4</sub><sup>2-</sup> in electroplating baths
- Quality monitoring of high-purity chemicals (e.g. conc. acids)
- Complex separation problems
- Difficult matrices

| <b>Technical information</b> |                             |
|------------------------------|-----------------------------|
| Substrate                    | Poly(styrene-co-            |
|                              | divinylbenzene) with qua-   |
|                              | ternary ammonium groups     |
| Column dimensions            | 250 x 4.0 mm                |
| Column body                  | PEEK                        |
| Standard flow                | 0.8 mL/min                  |
| Maximum flow                 | 1.2 mL/min                  |
| Maximum pressure             | 20 MPa                      |
| Particle size                | 4.6 µm                      |
| Organic modifier             | 0-10%                       |
| pH range                     | 0–13                        |
| Temperature range            | 10-70 °C                    |
| Capacity                     | 195 μmol (Cl <sup>-</sup> ) |

### Eluent

| Carbonate/hydroxide eluent | Sodium carbonate          | 1590 mg/2 L | 7.5 mmol/L  |
|----------------------------|---------------------------|-------------|-------------|
| (standard eluent)          | Sodium hydroxide          | 6.0 mL/2 L  | 0.75 mmol/L |
|                            | (c = 0.25  mol/L)         |             |             |
| Hydroxide eluent           | Sodium hydroxide          | 4.0 mL/2 L  | 20 mmol/L   |
|                            | (c = 10  mol/L)           |             |             |
| Carbonate eluent           | Sodium hydrogen carbonate | 420 mg/2 L  | 2.5 mmol/L  |
|                            | Sodium carbonate          | 1166 mg/2 L | 5.5 mmol/L  |

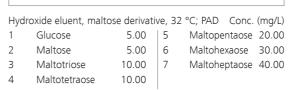
### Care

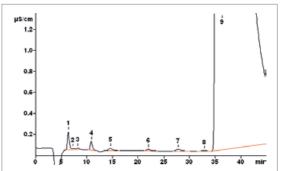
Regeneration

Rinse the column overnight (12 h) with standard eluent at a low flow rate (0.4 mL/min).

Rinse the column with one third of the standard flow in the opposite direction for 2 h with 15 mmol/L  $Na_2CO_3$  the direction of flow. and then for 2 h with ultrapure water.

Eluent change


When installing or changing to eluents which have an organic modifier to avoid high backpressure, adjust the flow in small increments from 0.4 mL/min to match standard conditions within one hour while maintaining the direction of flow.


Storage In the eluent



Nitrite







5.00

10.00

Phosphate

10.00

| Carbonate eluent, diluted sulfuric acid |          |      |   |           |      |  |  |  |
|-----------------------------------------|----------|------|---|-----------|------|--|--|--|
| after neutralization Conc. (mg/L)       |          |      |   |           |      |  |  |  |
| 1                                       | Fluoride | 0.50 | 6 | Bromide   | 0.50 |  |  |  |
| 2                                       | Formate  | n.q. | 7 | Nitrate   | 0.50 |  |  |  |
| 3                                       | Acetate  | n.q. | 8 | Phosphate | 0.50 |  |  |  |
| 4                                       | Chloride | 0.50 | 9 | Sulfate   | n.q. |  |  |  |
| 5                                       | Nitrite  | 0.50 |   |           |      |  |  |  |

| Ordering information           |            |
|--------------------------------|------------|
| Metrosep A Supp 16 - 250/4.0   | 6.1031.430 |
| Metrosep A Supp 16 Guard/4.0   | 6.1031.500 |
| Metrosep A Supp 16 S-Guard/4.0 | 6.1031.510 |

### Metrosep A Supp 17 - 100/4.0 (6.01032.410)

The Metrosep A Supp 17 columns are anion separation columns for use at room temperature with a very good price-performance ratio. The Metrosep A Supp 17 - 100/4.0 enables rapid separation of the standard anions. Thanks to its great flexibility with respect to flow rates (up to 1.8 mL/min), very short analysis times can be achieved, depending on the separation problem.

### **Applications**

- Anion determinations at room temperature
- Simple water analysis

### **Technical information**

Substrate Poly(styrene-co-

divinylbenzene) with quaternary ammonium groups

100 10

Column dimensions 100 x 4.0 mm

Column body PEEK
Standard flow 0.6 mL/min
Maximum flow 1.8 mL/min
Maximum pressure 18 MPa

Particle size 5.0 µm

Organic modifier 0–100% methanol

0–40% acetone or

44 μmol (Cl<sup>-</sup>)

acetonitrile

pH range 0–14 Temperature range 10–70 °C Standard temperature 25 °C

Capacity

Eluent

| Carbonate eluent  | Sodium hydrogen carbonate | 33.6 mg/2 L | 0.2 mmol/L |
|-------------------|---------------------------|-------------|------------|
| (standard eluent) | Sodium carbonate          | 1060 mg/2 L | 5.0 mmol/L |

### Care

### Preparation

Rinse the column with eluent for 2-3 h.

### Regeneration

Inorganic contamination

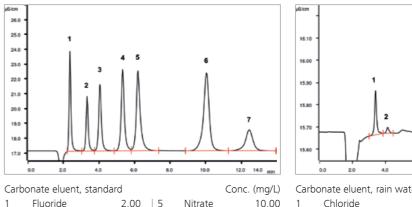
- 1. Rinse with ultrapure water (20 min at 0.3 mL/min)
- 2. Rinse with 10x concentrated standard eluent (120 min at 0.3 mL/min)
- 3. Rinse with ultrapure water (20 min at 0.3 mL/min)
- 4. Rinse with standard eluent (120 min at 0.3 mL/min)

### Organic contamination

- 1. Rinse with 70% methanol (16 h at 0.3 mL/min)
- 2. Rinse with standard eluent (120 min at 0.3 mL/min)

### Storage

In the eluent




### Chromatograms

Chloride

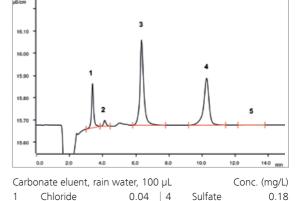
Bromide

Nitrite



Sulfate

Phosphate


2.00

5.00

10.00

6

7



0.01

0.27

5

Phosphate

79

| Ordering information           |             |
|--------------------------------|-------------|
| Metrosep A Supp 17 - 100/4.0   | 6.01032.410 |
| Metrosep A Supp 17 Guard/4.0   | 6.01032.500 |
| Metrosep A Supp 17 S-Guard/4.0 | 6.01032.510 |

10.00

10.00

2

3

Nitrite

Nitrate

### Metrosep A Supp 17 - 150/4.0 (6.01032.420)

The separation column Metrosep A Supp 17 - 150/4.0 is the column of choice for anion determinations that require good separating efficiency and short separation times at room temperature. The maximum flow rate of 1.4 mL/min also makes it possible to optimize the determination. The Metrosep A Supp 17 columns convince with their good price-performance ratio.

### **Applications**

- Anion determinations at room temperature
- Water analysis

### **Technical information**

Substrate Poly(styrene-co-

divinylbenzene) with qua-

ternary ammonium groups

Column dimensions 150 x 4.0 mm

Column body PEEK
Standard flow 0.6 mL/min
Maximum flow 1.4 mL/min

Maximum pressure 18 MPa Particle size 5.0 µm

Organic modifier 0–100% methanol

0-40% acetone or

acetonitrile

65 µmol (Cl<sup>-</sup>)

pH range 0–14
Temperature range 10–70 °C

Capacity

### Eluent

| Carbonate eluent  | Sodium hydrogen carbonate | 33.6 mg/2 L | 0.2 mmol/L |
|-------------------|---------------------------|-------------|------------|
| (standard eluent) | Sodium carbonate          | 1060 mg/2 L | 5.0 mmol/L |

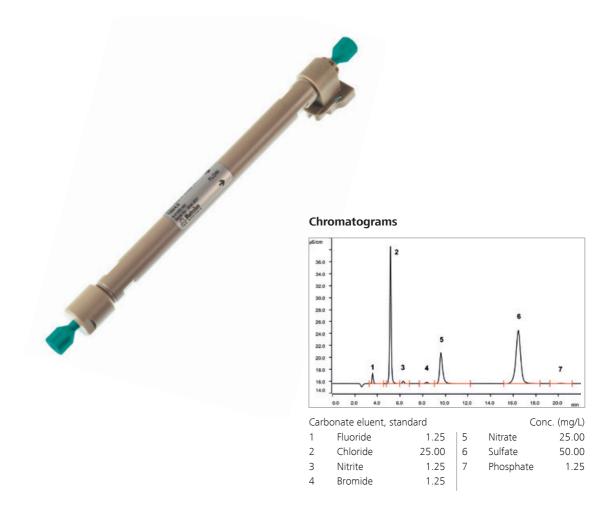
### Care

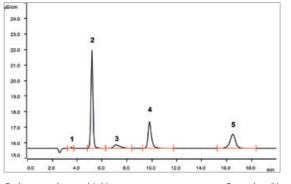
### Preparation

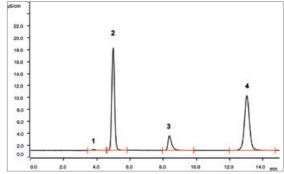
Rinse the column with eluent for 2–3 h.

### Regeneration

Inorganic contamination


- 1. Rinse with ultrapure water (20 min at 0.3 mL/min)
- 2. Rinse with 10x concentrated standard eluent (120 min at 0.3 mL/min)
- 3. Rinse with ultrapure water (20 min at 0.3 mL/min)
- 4. Rinse with standard eluent (120 min at 0.3 mL/min)


### Organic contamination


- 1. Rinse with 70% methanol (16 h at 0.3 mL/min)
- 2. Rinse with standard eluent (120 min at 0.3 mL/min)

### Storage

In the eluent







| Carbonate eluent, drinking water Conc. (mg/l |             |      |   |         |      |  |  |
|----------------------------------------------|-------------|------|---|---------|------|--|--|
| 1                                            | Fluoride    | < 1  | 4 | Nitrate | 8.77 |  |  |
| 2                                            | Chloride    | 9.79 | 5 | Sulfate | 5.83 |  |  |
| 3                                            | System peak | _    |   |         |      |  |  |

| _) | Carl | Conc. (mg/L) |      |   |         |       |
|----|------|--------------|------|---|---------|-------|
| 7  | min  |              |      |   |         |       |
| 3  | 1    | Fluoride     | < 1  | 3 | Nitrate | 3.80  |
|    | 2    | Chloride     | 9.55 | 4 | Sulfate | 13.25 |

81

| Ordering information           |             |
|--------------------------------|-------------|
| Metrosep A Supp 17 - 150/4.0   | 6.01032.420 |
| Metrosep A Supp 17 Guard/4.0   | 6.01032.500 |
| Metrosep A Supp 17 S-Guard/4.0 | 6.01032.510 |

### Metrosep A Supp 17 - 250/4.0 (6.01032.430)

The Metrosep A Supp 17 - 250/4.0 combines high separating efficiency with a good price-performance ratio without requiring the use of a column oven. The poly(styrene-co-divinylbenzene) base material used guarantees a long service life for the column. Complex separation tasks can be solved on this column.

### Applications

- Anion determinations at room temperature
- Water analysis
- Wastewater analysis
- Difficult matrices

| Technical | information |
|-----------|-------------|
|           |             |

Substrate Poly(styrene-co-

divinylbenzene) with quaternary ammonium groups

Column dimensions 250 x 4.0 mm

Column body PEEK
Standard flow 0.6 mL/min
Maximum flow 1.0 mL/min
Maximum pressure 18 MPa

Particle size  $5.0 \ \mu m$  Organic modifier 0-100% methanol

0–40% acetone or

acetonitrile pH range 0-14 Temperature range  $10-70 \, ^{\circ}\text{C}$ 

Capacity 109 µmol (Cl<sup>-</sup>)

### Eluent

| Carbonate eluent  | Sodium hydrogen carbonate                   | 33.6 mg/2 L | 0.2 mmol/L |
|-------------------|---------------------------------------------|-------------|------------|
| (standard eluent) | Sodium carbonate                            | 1060 mg/2 L | 5.0 mmol/L |
| Hydroxide eluent  | Sodium hydroxide ( $c = 10 \text{ mol/L}$ ) | 10 mL/2 L   | 50 mmol/l  |

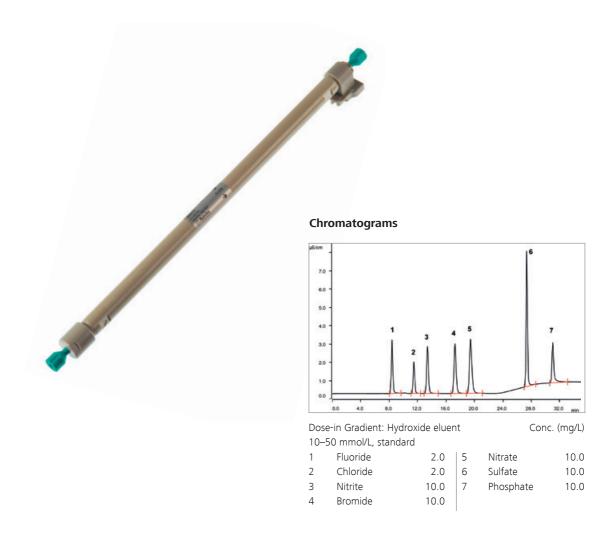
### Care

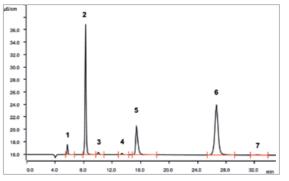
Preparation

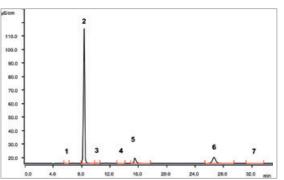
Rinse the column with eluent for 2–3 h.

Regeneration

Inorganic contamination


- 1. Rinse with ultrapure water (20 min at 0.3 mL/min)
- 2. Rinse with 10x concentrated standard eluent (120 min at 0.3 mL/min)
- 3. Rinse with ultrapure water (20 min at 0.3 mL/min)
- 4. Rinse with standard eluent (120 min at 0.3 mL/min)


Organic contamination


- 1. Rinse with 70% methanol (16 h at 0.3 mL/min)
- 2. Rinse with standard eluent (120 min at 0.3 mL/min)

Storage

In the eluent







|     | 0.0 4.0      | 0.0 12.0    | 10.0  | 2010 | 24.0    | 20.9 | SE.U min  |      |
|-----|--------------|-------------|-------|------|---------|------|-----------|------|
| Car | bonate eluer | nt, standar | d     |      |         | Con  | c. (mg/L) | Carb |
| 1   | Fluoride     |             | 1.25  | 5    | Nitrate |      | 25.00     | 1    |
| 2   | Chloride     | 2           | 25.00 | 6    | Sulfate |      | 50.00     | 2    |
| 3   | Nitrite      |             | 1.25  | 7    | Phospha | ite  | 1.25      | 3    |
| 4   | Bromide      |             | 1.25  |      |         |      |           | 4    |
|     |              |             |       |      |         |      |           |      |

| Carbonate eluent, treated wastewater |          |       | Cor | nc. (mg/L) |      |
|--------------------------------------|----------|-------|-----|------------|------|
| 1                                    | Fluoride | < 1   | 5   | Nitrate    | 21.5 |
| 2                                    | Chloride | 102.7 | 6   | Sulfate    | 29.7 |
| 3                                    | Nitrite  | < 1   | 7   | Phosphate  | < 1  |
| 4                                    | Bromide  | < 1   |     |            |      |

83

| Ordering information                |             |
|-------------------------------------|-------------|
| Metrosep A Supp 17 - 250/4.0        | 6.01032.430 |
| Metrosep A Supp 17 Guard/4.0        | 6.01032.500 |
| Metrosep A Supp 17 S-Guard/4.0      | 6.01032.510 |
| Metrosep A Supp 17 S-Guard - 50/4.0 | 6.01032.530 |

### Metrosep A Supp 18 - 150/4.0 (6.01033.420)

The selectivity of the Metrosep A Supp 18 column is designed specifically for work with hydroxide eluents. The Metrosep A Supp 18 - 150/4.0 is the shorter column version of the Metrosep A Supp 18. High separating efficiencies are achieved with the small particle size of 3.5 µm. The symmetrical peaks enable simple determination of anions, including in low µg/L concentration ranges. The Metrosep A Supp 18 - 150/4.0 is particularly suitable for the separation of standard anions under isocratic conditions at room temperature.

### **Applications**

- Anion determinations
- Water analysis

Temperature range

Capacity

| <b>Technical information</b> |                             |
|------------------------------|-----------------------------|
| Substrate                    | Polyvinyl alcohol with qua- |
|                              | ternary ammonium groups     |
| Column dimensions            | 150 x 4.0 mm                |
| Column body                  | PEEK                        |
| Standard flow                | 0.5 mL/min                  |
| Maximum flow                 | 0.9 mL/min                  |
| Maximum pressure             | 22 MPa                      |
| Particle size                | 3.5 µm                      |
| Organic modifier             | 0-100% (particularly        |
|                              | acetone, acetonitrile,      |
|                              | methanol)                   |
| pH range                     | 3–13                        |

10-50 °C

51 μmol (Cl<sup>-</sup>)

### Eluent

Hydroxide eluent Potassium hydroxide (c = 4 mol/L) 11.5 mL/2 L 23 mmol/L

#### Care

### Preparation

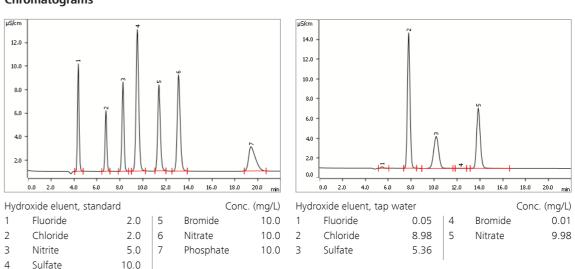
Rinse the column with eluent for 2–3 h.

### Regeneration

Inorganic contamination

- 1. Rinse with ultrapure water in direction opposite to the flow (1 h at 0.4 mL/min)
- 2. Rinse with 50 mmol/L potassium hydroxide in direction opposite to the flow (2 h at 0.4 mL/min)
- 3. Rinse with ultrapure water (1 h at 0.4 mL/min)
- 4. Rinse with standard eluent (2 h at 0.4 mL/min)

### Organic contamination


- 1. Rinse with ultrapure water in the direction opposite to the flow (1 h at 0.4 mL/min)
- 2. Rinse with acetonitrile-water mixture (50:50) in the direction opposite to the flow (2 h at 0.4 mL/min)
- 3. Rinse with ultrapure water in the direction opposite to the flow (1 h at 0.4 mL/min)
- 4. Rinse with standard eluent (2 h at 0.4 mL/min)

#### Storage

In the eluent at maximum +8°C



### Chromatograms



| Ordering information         |             |
|------------------------------|-------------|
| Metrosep A Supp 18 - 150/4.0 | 6.01033.420 |
| Metrosep A Supp 18 Guard/4.0 | 6.01033.500 |

### Metrosep A Supp 18 - 250/4.0 (6.01033.430)

The selectivity of the Metrosep A Supp 18 columns is designed specifically for work with hydroxide eluents. The Metrosep A Supp 18 - 250/4.0 is the longer column version of the Metrosep A Supp 18. High separating efficiencies are achieved with the small particle size of 3.5  $\mu m$ . The symmetrical peaks enable simple determination of anions, including in low  $\mu g/L$  concentration ranges. In addition to the standard anions, the Metrosep A Supp 18 - 250/4.0 is particularly suitable for the separation of the oxyhalides chlorite, bromate and chlorate at room temperature.

### **Applications**

- EPA Method 300.1 Part A+B: simultaneous determination of standard anions and ClO<sub>2</sub><sup>-</sup>, ClO<sub>3</sub><sup>-</sup>, BrO<sub>3</sub><sup>-</sup> and DCAA (dichloroacetic acid)
- Water analysis

| <b>Technical information</b> |                            |
|------------------------------|----------------------------|
| Substrate                    | Polyvinyl alcohol with qua |
|                              | ternary ammonium group     |
| Column dimensions            | 250 v 4.0 mm               |

Column body PEEK
Standard flow 0.5 mL/min
Maximum flow 0.65 mL/min
Maximum pressure 22 MPa
Particle size 3.5 µm

Organic modifier 0–100% (particularly acetone, acetonitrile,

methanol)

pH range 3–13 Temperature range 10–50 °C Capacity 85  $\mu$ mol (Cl<sup>-</sup>)

### Eluent

| Hydroxide eluent | Potassium hydroxide ( $c = 4 \text{ mol/L}$ ) | 6.5 mL    | 13 mmol/L |
|------------------|-----------------------------------------------|-----------|-----------|
| Hydroxide eluent | Potassium hydroxide ( $c = 4 \text{ mol/L}$ ) | 26 mL/2 L | 52 mmol/L |

#### Care

### Preparation

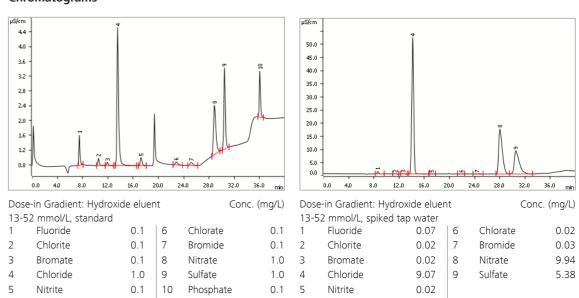
Rinse the column with eluent for 2–3 h.

### Regeneration

Inorganic contamination

- 1. Rinse with ultrapure water in direction opposite to the flow (1 h at 0.4 mL/min)
- 2. Rinse with 50 mmol/L potassium hydroxide in direction opposite to the flow (2 h at 0.4 mL/min)
- 3. Rinse with ultrapure water (1 h at 0.4 mL/min)
- 4. Rinse with standard eluent (2 h at 0.4 mL/min)

### Organic contamination


- 1. Rinse with ultrapure water in the direction opposite to the flow (1 h at 0.4 mL/min)
- 2. Rinse with acetonitrile-water mixture (50:50) in the direction opposite to the flow (2 h at 0.4 mL/min)
- 3. Rinse with ultrapure water in the direction opposite to the flow (1 h at 0.4 mL/min)
- 4. Rinse with standard eluent (2 h at 0.4 mL/min)

#### Storage

In the eluent at maximum +8°C



### Chromatograms



| Ordering information         |             |
|------------------------------|-------------|
| Metrosep A Supp 18 - 250/4.0 | 6.01033.430 |
| Metrosep A Supp 18 Guard/4.0 | 6.01033.500 |

### Metrosep A Supp 19 - 100/4.0 (6.01034.410)

Outstanding separation properties and high-capacity these are the things which clearly distinguish the Metrosep A Supp 19 product family from the rest of the column portfolio. It features best peak symmetries and selectivities as well as high thermal, mechanical and chemical stability, which makes it extremely robust and stable in the presence of higher flow rates and pressures. The shortest anion separation column of the Metrosep A Supp 19 product family is the 100 mm version - outstandingly suitable for simple applications that require rapid and robust analytics. With elevated flow, reliable determination of the standard anions is possible in less than 7 minutes. Even at these higher flow rates, the separation between fluoride and the injection peak is guaranteed. Short elution times permit a high sample throughput, which is particularly important for contract laboratories and in routine analysis.

A further application area of the Metrosep A Supp 19 - 100/4.0 is the determination of analytes which usually have very late elution, e.g. perchlorate or citrate. Due to high flow rates and strong eluents, even analytes such as these can be determined in a very short time, thus rendering the entire analysis time-saving and efficient.

### Applications

- Anion determinations at room temperature
- Fast water analysis
- Wastewater analysis
- Difficult matrices

| Technical information |                        |
|-----------------------|------------------------|
| Substrate             | Hydrophilized          |
|                       | poly(styrene-co-       |
|                       | divinylbenzene) with   |
|                       | quaternary ammonium    |
|                       | groups                 |
| Column dimensions     | 100 x 4.0 mm           |
| Column body           | PEEK                   |
| Standard flow         | 0.7 mL/min             |
| Maximum flow          | 1.3 mL/min             |
| Maximum pressure      | 20 MPa                 |
| Particle size         | 4.6 µm                 |
| Organic modifier      | 0-100% (particularly   |
|                       | acetone, acetonitrile, |
|                       | methanol)              |

| pH range          | 0-14                       |
|-------------------|----------------------------|
| Temperature range | 10-70 °C                   |
| Capacity          | 94 μmol (Cl <sup>-</sup> ) |

### Eluent

| Carbonate eluent  | Sodium hydrogen carbonate | 42 mg/2 L   | 0.25 mmol/L |
|-------------------|---------------------------|-------------|-------------|
| (standard eluent) | Sodium carbonate          | 1696 mg/2 L | 8.0 mmol/L  |

#### Care

### Preparation

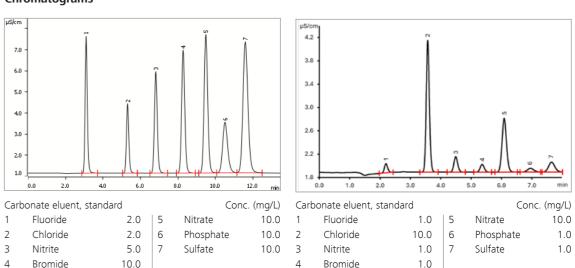
Rinse the column with eluent for 1 h.

### Regeneration

Inorganic contamination

- 1. Rinse with ultrapure water (20 min at 0.4 mL/min)
- 2. Rinse with 10x concentrated standard eluent (120 min at 0.4 mL/min)
- 3. Rinse with ultrapure water (20 min at 0.4 mL/min)
- 4. Rinse with standard eluent (30 min at 0.6 mL/min)

### Organic contamination


- 1. Rinse with ultrapure water in the direction opposite to the flow (1 h at 0.4 mL/min)
- 2. Rinse with acetonitrile-water mixture (50:50) in the direction opposite to the flow (2 h at 0.4 mL/min)
- 3. Rinse with ultrapure water in the direction opposite to the flow (1 h at 0.4 mL/min)
- 4. Rinse with standard eluent (2 h at 0.4 mL/min)

#### Storage

In the eluent



### Chromatograms



| Ordering information         |             |
|------------------------------|-------------|
| Metrosep A Supp 19 - 100/4.0 | 6.01034.410 |
| Metrosep A Supp 19 Guard/4.0 | 6.01034.500 |

### Metrosep A Supp 19 - 150/4.0 (6.01034.420)

Outstanding separation properties and high-capacity these are the things which clearly distinguish the Metrosep A Supp 19 product family from the rest of the column portfolio. It features best peak symmetries and selectivities as well as high thermal, mechanical and chemical stability, which makes it extremely robust and stable in the presence of higher flow rates and pressures. The 150 mm version is considered the standard column for anion chromatography, as it reliably solves the lion's share of applications and is very versatile in its use. Thanks to its high capacity, the Metrosep A Supp 19 -150/4.0 separation column is particularly well suited even for complex applications with sophisticated matrices. The range of applications of the Metrosep A Supp 19 - 150/4.0 is very versatile, thanks to its outstanding separation properties and comprises the following applications, for example:

- Determination of standard anions (fluoride, chloride, nitrite, bromide, nitrate, phosphate and sulfate) in a wide variety of water samples;
- Determination of standard anions and organic acids in complex sample matrices, e.g. environmental or food samples;
- Determination of standard anions and organic acids in boiler feed water to ensure the safe operation of power plants;
- Determination of standard anions in pharmaceutical samples.

### **Applications**

- Anion determinations at room temperature
- Water analysis
- Wastewater analysis
- Difficult matrices
- Pharmaceutical samples
- Anions in boiler feed water in power plants

| Technical | information |
|-----------|-------------|
| Substrate |             |

Substrate Hydrophilized poly(styrene-co-

divinylbenzene) with quaternary ammonium

groups

Column dimensions 150 x 4.0 mm

Column body PEEK
Standard flow 0.7 mL/min
Maximum flow 1.2 mL/min
Maximum pressure 25 MPa
Particle size 4.6 µm

Organic modifier 0–100% (particularly

acetone, acetonitrile, methanol)

pH range 0–14 Temperature range 10–70 °C Capacity 140  $\mu$ mol (Cl¯)

#### Eluent

| (standard eluent) | Sodium carbonate          | 1696 mg/2 L | 8.0 mmol/L  |
|-------------------|---------------------------|-------------|-------------|
| Carbonate eluent  | Sodium hydrogen carbonate | 42 mg/2 L   | 0.25 mmol/L |

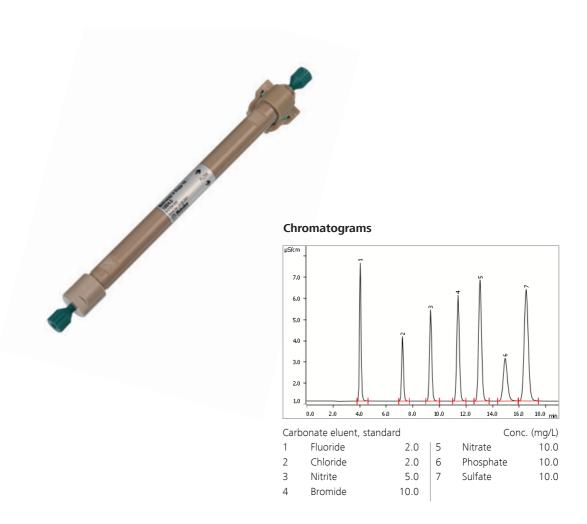
#### Care

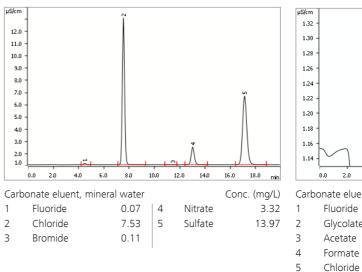
### Preparation

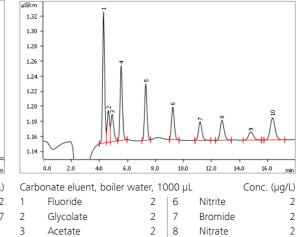
Rinse the column with eluent for 1 h.

### Regeneration

Inorganic contamination


- 1. Rinse with ultrapure water (20 min at 0.4 mL/min)
- 2. Rinse with 10x concentrated standard eluent (120 min at 0.4 mL/min)
- 3. Rinse with ultrapure water (20 min at 0.4 mL/min)
- 4. Rinse with standard eluent (30 min at 0.6 mL/min)


#### Organic contamination


- 1. Rinse with ultrapure water in the direction opposite to the flow (1 h at 0.4 mL/min)
- 2. Rinse with acetonitrile-water mixture (50:50) in the direction opposite to the flow (2 h at 0.4 mL/min)
- 3. Rinse with ultrapure water in the direction opposite to the flow (1 h at 0.4 mL/min)
- 4. Rinse with standard eluent (2 h at 0.4 mL/min)

### Storage

In the eluent







2 9

2 10 Sulfate

Phosphate

| Ordering information         |             |
|------------------------------|-------------|
| Metrosep A Supp 19 - 150/4.0 | 6.01034.420 |
| Metrosep A Supp 19 Guard/4.0 | 6.01034.500 |

### Metrosep A Supp 19 - 250/4.0 (6.01034.430)

Outstanding separation properties and high-capacity these are the things which clearly distinguish the Metrosep A Supp 19 product family from the rest of the column portfolio. It features best peak symmetries and selectivities as well as high thermal, mechanical and chemical stability, which makes it extremely robust and stable in the presence of higher flow rates and pressures. With the longest of the columns, i.e. the 250 mm version, the portfolio of the Metrosep A Supp 19 product family is rounded out to include a high-performance separation column. The exceptionally stable packaging ensures that the separation column will enjoy a long service life. With its unsurpassed separating efficiency, it is suitable for even the most complex application challenges. This means that the possible usages of this anion separation column greatly exceed the standard applications.

Thanks to the extremely high capacity of this separation column, combined with its outstanding plate counts, even the most demanding sample matrices are easily mastered with the Metrosep A Supp 19 - 250/4.0.

The separation column can also be readily used for gradient applications to further optimize the separation, as for example for the determination of organic acids of low molecular weight.

### Applications

- Anion determinations at room temperature
- Organic acids in food and beverage
- Water analysis
- Wastewater analysis
- Difficult matrices
- Anions in boiler feed water in power plants

groups

Hydrophilized

poly(styrene-co-

divinylbenzene) with

quaternary ammonium

Column dimensions 250 x 4.0 mm

Column body PEEK
Standard flow 0.7 mL/min
Maximum flow 1.0 mL/min
Maximum pressure 25 MPa
Particle size 4.6 µm

Organic modifier 0–100% (particularly

acetone, acetonitrile,

 methanol)

 pH range
 0−14

 Temperature range
 10−70 °C

 Capacity
 234 μmol (Cl⁻)

#### Eluent

| Carbonate eluent  | Sodium hydrogen carbonate | 42 mg/2 L   | 0.25 mmol/L |
|-------------------|---------------------------|-------------|-------------|
| (standard eluent) | Sodium carbonate          | 1696 mg/2 L | 8.0 mmol/L  |

#### Care

### Preparation

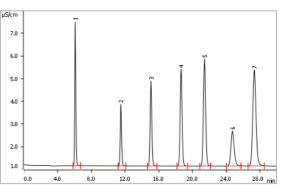
Rinse the column with eluent for 1 h.

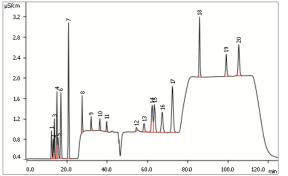
### Regeneration

Inorganic contamination

- 1. Rinse with ultrapure water (20 min at 0.4 mL/min)
- 2. Rinse with 10x concentrated standard eluent (120 min at 0.4 mL/min)
- 3. Rinse with ultrapure water (20 min at 0.4 mL/min)
- 4. Rinse with standard eluent (30 min at 0.6 mL/min)

### Organic contamination


- 1. Rinse with ultrapure water in the direction opposite to the flow (1 h at 0.4 mL/min)
- 2. Rinse with acetonitrile-water mixture (50:50) in the direction opposite to the flow (2 h at 0.4 mL/min)
- 3. Rinse with ultrapure water in the direction opposite to the flow (1 h at 0.4 mL/min)
- 4. Rinse with standard eluent (2 h at 0.4 mL/min)


#### Storage

In the eluent



### Chromatograms





| Carl | oonate eluent, sta  | andard |   | Con       | c. (mg/L)   |
|------|---------------------|--------|---|-----------|-------------|
| Cuii | bonate clacift, ste | andara |   | COIN      | c. (IIIg/L) |
| 1    | Fluoride            | 2.0    | 5 | Nitrate   | 10.0        |
| 2    | Chloride            | 2.0    | 6 | Phosphate | 10.0        |
| 3    | Nitrite             | 5.0    | 7 | Sulfate   | 10.0        |
| 4    | Bromide             | 10.0   |   |           |             |
|      |                     |        |   |           |             |

| Carb | onate eluent, organ | ic acids |    | Conc       | . (mg/L) |
|------|---------------------|----------|----|------------|----------|
| 1    | Quinate             | 2.5      | 11 | Nitrate    | 1.0      |
| 2    | Galacturonate       | 2.5      | 12 | Phosphate  | 1.0      |
| 3    | Fluoride            | 0.5      | 13 | Sulfate    | 1.0      |
| 4    | Lactate             | 2.5      | 14 | Malate     | 5.0      |
| 5    | Shikimate           | 2.5      | 15 | Tartrate   | 5.0      |
| 6    | Acetate             | 2.5      | 16 | Succinate  | 5.0      |
| 7    | Formate             | 2.5      | 17 | Oxalate    | 5.0      |
| 8    | Chloride            | 1.0      | 18 | Fumarate   | 5.0      |
| 9    | Nitrite             | 1.0      | 19 | Citrate    | 5.0      |
| 10   | Bromide             | 1.0      | 20 | Isocitrate | 10.0     |

| Ordering information         |             |
|------------------------------|-------------|
| Metrosep A Supp 19 - 250/4.0 | 6.01034.430 |
| Metrosep A Supp 19 Guard/4.0 | 6.01034.500 |

### Metrosep A Supp 21 - 150/4.0 (6.01036.420)

The Metrosep A Supp 21 columns are designed for operation with hydroxide-based eluents and provide excellent separating efficiency, coupled with a very high capacity. The small particles (4.6 µm) based on hydrophilized poly(styrene-co-divinylbenzene) guarantee sharp peaks. The stationary phase exhibits high stability with respect to temperature, pressure, and pH value, and is therefore suitable for extreme working conditions.

The shorter version, Metrosep A Supp 21 - 150/4.0, is suitable for the determination of standard anions (fluoride, chloride, nitrite, bromide, nitrate, sulfate and phosphate) in all types of water samples at room temperature. With its separating efficiency, it exceeds the requirements of the US EPA method 300.1 A and of the DIN EN ISO 10304-1 standard. The high capacity of the column enables the quantification of anions in low  $\mu$ g/L concentrations with excellent reproducibility, even in the most challenging sample matrices.

### Applications

- Anion determinations
- Water analysis
- Wastewater analysis
- Difficult matrices

| Technical information |                             |
|-----------------------|-----------------------------|
| Substrate             | Hydrophilized               |
|                       | poly(styrene-co-            |
|                       | divinylbenzene) with        |
|                       | quaternary ammonium         |
|                       | groups                      |
| Column dimensions     | 150 x 4.0 mm                |
| Column body           | PEEK                        |
| Standard flow         | 0.8 mL/min                  |
| Maximum flow          | 1.4 mL/min                  |
| Maximum pressure      | 21 MPa                      |
| Particle size         | 4.6 μm                      |
| Organic modifier      | 0-100% (particularly        |
|                       | acetone, acetonitrile,      |
|                       | methanol, isopropanol)      |
| pH range              | 0-14                        |
| Temperature range     | 10-70 °C                    |
| Capacity              | 246 μmol (Cl <sup>-</sup> ) |

#### Eluent

| Hydroxide eluent | Potassium hydroxide ( $c = 4 \text{ mol/L}$ ) | 7.5 mg/2 L | 15 mmol/L |
|------------------|-----------------------------------------------|------------|-----------|
| Hydroxide eluent | Potassium hydroxide ( $c = 4 \text{ mol/L}$ ) | 30 mL/2 L  | 60 mmol/L |

#### Care

### Preparation

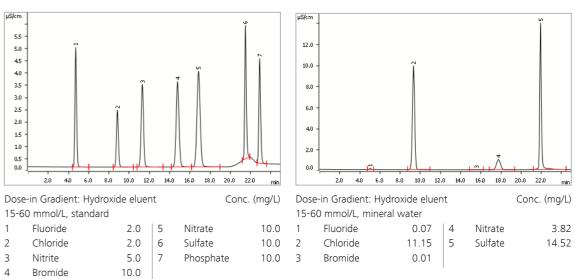
Rinse the column with 60 mmol/L potassium hydroxide for 3–4 h.

### Regeneration

Inorganic contamination

- 1. Rinse with 80 mmol/L potassium hydroxide in the direction opposite to the flow (120 min at 0.5 mL/ min)
- 2. Rinse with standard eluent (30 min at 0.8 mL/min)

### Organic contamination


- 1. Rinse with ultrapure water in the direction opposite to the flow (1 h at 0.5 mL/min)
- 2. Rinse with acetonitrile-water mixture (50:50) in the direction opposite to the flow (2 h at 0.5 mL/min)
- 3. Rinse with ultrapure water in the direction opposite to the flow (1 h at 0.5 mL/min)
- 4. Rinse with standard eluent (2 h at 0.8 mL/min)

#### Storage

In 20 mmol/L sodium sulfate at 4 to 8 °C



### Chromatograms



| Ordering information         |             |
|------------------------------|-------------|
| Metrosep A Supp 21 - 150/4.0 | 6.01036.420 |
| Metrosep A Supp 21 Guard/4.0 | 6.01036.500 |

### Metrosep A Supp 21 - 250/4.0 (6.01036.430)

The Metrosep A Supp 21 columns are designed for operation with hydroxide-based eluents and provide excellent separating efficiency, coupled with a very high capacity. The small particles (4.6 µm) based on hydrophilized poly(styrene-co-divinylbenzene) guarantee sharp peaks. The stationary phase exhibits high stability with respect to temperature, pressure, and pH value, and is therefore suitable for extreme working conditions.

The longer Metrosep A Supp 21 - 250/4.0 column version was specially developed for the determination of oxyhalides (chlorite, bromate, chlorate), standard anions (fluoride, chloride, nitrite, bromide, nitrate, sulfate, and phosphate), und DCAA (dichloracetate). With its separating efficiency, it exceeds the requirements of the US EPA method 300.1 A+B and of the DIN EN ISO 10304-184 standard. The high column capacity enables the quantification of anions and oxyhalides in low µg/L concentrations with excellent reproducibility, even in the most challenging sample matrices. With the wide range of elution conditions available, it is also possible to determine other anionic components, e.g. low-molecular-weight organic acids.

### **Applications**

- EPA Method 300.1 Part A+B: simultaneous determination of standard anions and ClO<sub>2</sub>, ClO<sub>3</sub>, BrO<sub>3</sub> and DCAA (dichloroacetic acid)
- Water analysis
- Wastewater analysis
- Difficult matrices

| Technical information |                             |
|-----------------------|-----------------------------|
| Substrate             | Hydrophilized               |
| Substrate             | poly(styrene-co-            |
|                       |                             |
|                       | divinylbenzene) with        |
|                       | quaternary ammonium         |
|                       | groups                      |
| Column dimensions     | 250 x 4.0 mm                |
| Column body           | PEEK                        |
| Standard flow         | 0.8 mL/min                  |
| Maximum flow          | 1.5 mL/min                  |
| Maximum pressure      | 25 MPa                      |
| Particle size         | 4.6 µm                      |
| Organic modifier      | 0-100% (particularly        |
|                       | acetone, acetonitrile,      |
|                       | methanol, isopropanol)      |
| pH range              | 0-14                        |
| Temperature range     | 10-70 °C                    |
| Capacity              | 410 umol (Cl <sup>-</sup> ) |

### Eluent

| Hydroxide eluent | Potassium hydroxide ( $c = 4 \text{ mol/L}$ ) | 9 mg/2 L  | 18 mmol/L |
|------------------|-----------------------------------------------|-----------|-----------|
| Hydroxide eluent | Potassium hydroxide ( $c = 4 \text{ mol/L}$ ) | 40 mL/2 L | 80 mmol/L |

#### Care

### Preparation

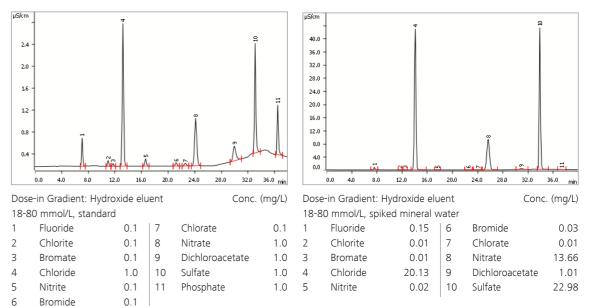
Rinse the column with 60 mmol/L potassium hydroxide for 3–4 h.

### Regeneration

Inorganic contamination

- 1. Rinse with 80 mmol/L potassium hydroxide in the direction opposite to the flow (120 min at 0.5 mL/min)
- 2. Rinse with standard eluent (30 min at 0.8 mL/min)

### Organic contamination


- 1. Rinse with ultrapure water in the direction opposite to the flow (1 h at 0.5 mL/min)
- 2. Rinse with acetonitrile-water mixture (50:50) in the direction opposite to the flow (2 h at 0.5 mL/min)
- 3. Rinse with ultrapure water in the direction opposite to the flow (1 h at 0.5 mL/min)
- 4. Rinse with standard eluent (2 h at 0.8 mL/min)

#### Storage

In 20 mmol/L sodium sulfate at 4 to 8 °C



### Chromatograms



| Ordering information         |             |
|------------------------------|-------------|
| Metrosep A Supp 21 - 250/4.0 | 6.01036.430 |
| Metrosep A Supp 21 Guard/4.0 | 6.01036.500 |

# Separation columns





Microbore IC anion-separation columns for lower eluent consumption and greater sensitivity

### Metrosep A Supp 4 - 250/2.0 (6.01021.230)

The microbore column Metrosep A Supp 4 - 250/2.0 is an extremely robust column with very good separation properties. The separation phase is comprised of polyvinyl alcohol particles with quaternary ammonium groups and a diameter of 9 µm. This structure guarantees great stability and a greater tolerance to very small particles that could pass through the integrated filter pad. The Metrosep A Supp 4 - 250/2.0 has a medium ion exchange capacity and is particularly suitable for all routine tasks in water analysis.

To protect the IC separation column – even though it is not particularly sensitive to contaminants – we recommend the use of the Metrosep A Supp 4 Guard/2.0.

### Applications

- Standard anions
- Water analysis
- Difficult matrices
- Critical samples
- Iodide
- IC-MS coupling

Standard flow

### **Technical information**

Polyvinyl alcohol with Substrate

quaternary

ammonium groups

Column dimensions 250 x 2.0 mm

Column body PEEK

0.25 mL/min

Maximum flow 0.7 mL/min

Maximum pressure 15 MPa Particle size 9 µm

Organic modifier 0-100% (particularly

> acetone, acetonitrile, methanol)

9 µmol (Cl<sup>-</sup>)

pH range

3-12 Temperature range 20-60 °C

Capacity

#### Eluent

With chemical suppression

Carbonate eluent Sodium hydrogen carbonate 286 mg/2 L 1.7 mmol/L (standard eluent) Sodium carbonate 382 mg/2 L 1.8 mmol/L

### Care

Regeneration

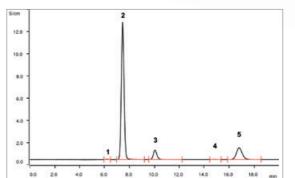
Contamination with hydrophilic ions:

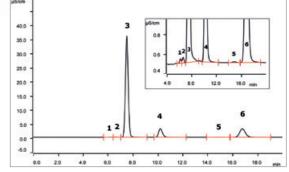
- a) Rinse with ultrapure water (15 min at 0.1 mL/min)
- b) Rinse with 10x concentrated eluent

(60 min at 0.1 mL/min)

- c) Rinse with ultrapure water (15 min at 0.1 mL/min)
- d) Rinse with eluent (60 min at 0.1 mL/min)

Contamination with lipophilic ions:


- a) Rinse with ultrapure water (15 min at 0.1 mL/min)
- b) Rinse with 5% acetonitrile (10 min at 0.1 mL/min)
- c) Rinse with 100% acetonitrile (60 min at 0.1 mL/min)
- d) Rinse with 50% acetonitrile (10 min at 0.1 mL/min)
- e) Rinse with ultrapure water (30 min at 0.1 mL/min)
- f) Rinse with eluent (60 min at 0.1 mL/min)


Storage

In the eluent



### Chromatograms





| Car | bonate eluent, st | Cor   | nc. (mg/L) |           |       |
|-----|-------------------|-------|------------|-----------|-------|
| 1   | Fluoride          | 0.008 | 4          | Phosphate | 0.080 |
| 2   | Chloride          | 4.000 | 5          | Sulfate   | 1.200 |
| 2   | Nitrato           | 0.800 |            |           |       |

| Carl | oonate eluent, tr | eated wastew | ater | Со        | nc. (mg/L) |
|------|-------------------|--------------|------|-----------|------------|
| 1    | Fluoride          | 0.16         | 4    | Nitrate   | 26.75      |
| 2    | Unknown           | _            | 5    | Phosphate | 0.99       |
| 3    | Chloride          | 113.72       | 6    | Sulfate   | 30.66      |

#### **Ordering information** Metrosep A Supp 4 - 250/2.0 6.01021.230 Metrosep A Supp 4 Guard/2.0 6.01021.600

### Metrosep A Supp 5 - 150/2.0 (6.1006.220)

The Metrosep A Supp 5 - 150/2.0 in the microbore version is distinguished for its excellent separation properties. The particle size of 5  $\mu$ m makes a decisive contribution to the separating efficiency of this column. The Metrosep A Supp 5 - 150/2.0 offers the optimum combination of selectivity and capacity, with which even complex separation tasks can be solved within a short time. The 2 mm Metrosep A Supp 5 separation columns are packed with the same material as the corresponding 4 mm separation columns. The 150 mm version of this column type is used for universal applications at low eluent consumption.

With its low eluent flow, this column is particularly suitable for IC/MS coupling.

### **Applications**

- Standard anions
- F', Cl', Br', I'
- ClO<sub>2</sub>, ClO<sub>3</sub>, ClO<sub>4</sub>, BrO<sub>3</sub>
- Cr (VI) (CrO<sub>4</sub><sup>2</sup>)
- Method development
- IC-MS coupling

### **Technical information**

Substrate Polyvinyl alcohol with

quarternary ammonium

groups

Column dimensions 150 x 2.0 mm

Column body PEEK

Standard flow 0.18 mL/min

Maximum flow 0.21 mL/min

Maximum pressure 20 MPa

Particle size 5 µm

Organic modifier 0–100% (particularly

acetone, acetonitrile,

methanol)
pH range 3–12
Temperature range 20–60 °C
Capacity 13 µmol (Cl¯)

Eluent

Carbonate eluent Sodium hydrogen carbonate 168 mg/2 L 1.0 mmol/L (standard eluent) Sodium carbonate 678 mg/2 L 3.2 mmol/L

### Care

### Regeneration

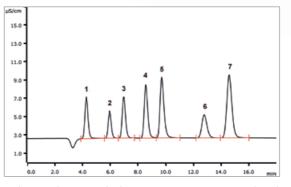
Contamination with low-valence hydrophilic ions

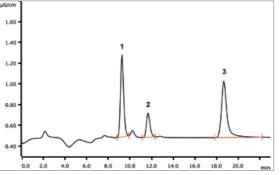
- 1. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 2. Rinse with 10x concentrated eluent (100 min at 0.1 mL/min)
- 3. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 4. Rinse with eluent (100 min at 0.1 mL/min)

Contamination with high-valence hydrophobic ions or organic contaminations

- 1. Rinse with eluent (100 min at 0.1 mL/min)
- 2. Rinse with 5% acetonitrile (20 min at 0.1 mL/min)
- 3. Rinse with 100% acetonitrile (60 min at 0.1 mL/min)
- 4. Rinse with 50% acetonitrile (10 min at 0.1 mL/min)
- 5. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 6. Rinse with eluent (100 min at 0.1 mL/min)

### Shifted system peak


- 1. Regeneration method with column oven
- 2. Rinse with concentrated eluent of 1 mol/L Na<sub>2</sub>CO<sub>3</sub> (25 min at 0.1 mL/min)
- 3. Maintain for 10–12 hours at 45–50  $^{\circ}$ C (without rinsing)
- 4. Rinse with the normal eluent (at least 40 min at 0.1 mL/min)


### Storage

In the eluent



### Chromatograms





| Carl | bonate eluent, s | tandard |   | Con       | ic. (mg/L) | Car | bonate eluent, po | lyethylene p | ellets | by      |           |
|------|------------------|---------|---|-----------|------------|-----|-------------------|--------------|--------|---------|-----------|
| 1    | Fluoride         | 2.00    | 5 | Nitrate   | 10.00      | Cor | nbustion IC (CIC) |              |        | Cond    | . (mg/kg) |
| 2    | Chloride         | 2.00    | 6 | Phosphate | 10.00      | 1   | Chloride          | 94.2         | 3      | Sulfate | 74.7      |
| 3    | Nitrite          | 5.00    | 7 | Sulfate   | 10.00      | 2   | Bromide           | 84.0         |        |         |           |
| 4    | Bromide          | 10.00   |   |           |            |     |                   |              | 1      |         |           |

| Ordering information          |            |
|-------------------------------|------------|
| Metrosep A Supp 5 - 150/2.0   | 6.1006.220 |
| Metrosep A Supp 5 Guard/2.0   | 6.1006.600 |
| Metrosep A Supp 5 S-Guard/2.0 | 6.1006.610 |

### Metrosep A Supp 5 - 250/2.0 (6.1006.230)

The Metrosep A Supp 5 - 250/2.0 is the microbore high-performance separation column with which even complex separation problems can be solved easily and reproducibly. The range of applications possible with this column far exceeds the detection of standard anions. The Metrosep A Supp 5 - 250/2.0 is used wherever maximum separating efficiency must be combined with both the lowest of detection limits and low eluent consumption.

With its low eluent flow, this column is particularly suitable for IC/MS coupling.

### Applications

- Standard anions
- F', Cl', Br', I'
- ClO<sub>2</sub>, ClO<sub>3</sub>, ClO<sub>4</sub>, BrO<sub>3</sub>
- ClO<sub>4</sub> at high ionic strength
- BrO<sub>3</sub> at high ionic strength
- Method development
- Universal applications
- Difficult matrices
- Complex separation problems
- Applications with gradient
- IC-MS coupling

| <b>Technical</b> | information | Ì |
|------------------|-------------|---|
|                  |             |   |

Substrate Polyvinyl alcohol with quarternary ammonium

groups

Column dimensions 250 x 2.0 mm

Column body PEEK

Standard flow 0.18 mL/min
Maximum flow 0.21 mL/min
Maximum pressure 20 MPa

Particle size 5 µm

Organic modifier 0–100% (particularly

acetone, acetonitrile, methanol)

pH range 3–12 Temperature range 20–60 °C

Capacity 21 µmol (Cl<sup>-</sup>)

### Eluent

Carbonate eluent Sodium hydrogen carbonate 168 mg/2 L 1.0 mmol/L (standard eluent) Sodium carbonate 678 mg/2 L 3.2 mmol/L

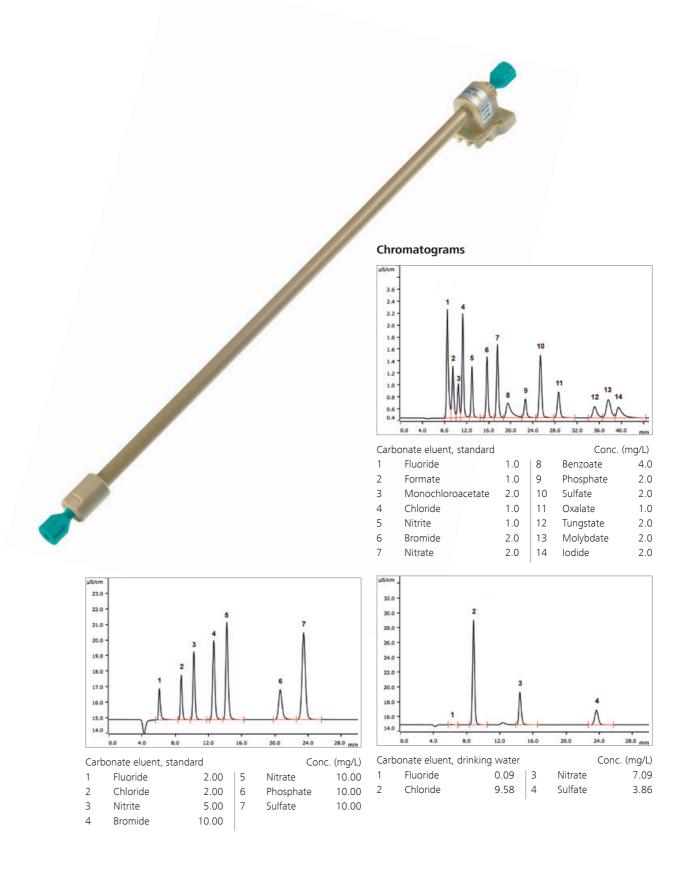
### Care

### Regeneration

Contamination with low-valence hydrophilic ions

- 1. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 2. Rinse with 10x concentrated eluent (100 min at 0.1 mL/min)
- 3. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 4. Rinse with eluent (100 min at 0.1 mL/min)

Contamination with high-valence hydrophobic ions or organic contaminations


- 1. Rinse with eluent (100 min at 0.1 mL/min)
- 2. Rinse with 5% acetonitrile (20 min at 0.1 mL/min)
- 3. Rinse with 100% acetonitrile (60 min at 0.1 mL/min)
- 4. Rinse with 50% acetonitrile (10 min at 0.1 mL/min)

- 5. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 6. Rinse with eluent (100 min at 0.1 mL/min)

### Shifted system peak

- 1. Regeneration method with column oven
- 2. Rinse with concentrated eluent of 1 mol/L Na<sub>2</sub>CO<sub>3</sub> (25 min at 0.1 mL/min)
- 3. Maintain for 10–12 hours at 45–50 °C (without rinsing)
- 4. Rinse with the normal eluent (at least 40 min at 0.1 mL/min)

### Storage In the eluent



# Ordering information Metrosep A Supp 5 - 250/2.0 6.1006.230 Metrosep A Supp 5 Guard/2.0 6.1006.600 Metrosep A Supp 5 S-Guard/2.0 6.1006.610

### Metrosep A Supp 7 - 150/2.0 (6.1006.640)

The Metrosep A Supp 7 - 150/2.0 is the shorter of the two Metrosep A Supp 7 columns in the microbore version. It allows similarly complex separation tasks to be solved the same way as with the corresponding 250 mm version, with no significant loss in separating efficiency.

With the Metrosep A Supp 7 - 150/2.0, the ions are determined with certainty and precision down to the lower  $\mu$ g/L range. High detection sensitivity is achieved by using the 5  $\mu$ m polyvinyl alcohol polymer, which allows extremely high plate numbers and therefore outstanding separation and detection properties. In addition, the separation can be adapted to the specific requirements of the application by modifying the temperature.

This microbore column is particularly suitable for use with an MS detector.

### Applications

- Standard anions
- Fast analysis (high flow rate)
- Applications with gradient
- IC-MS

### Technical information

| ٦ | Technical information |                           |
|---|-----------------------|---------------------------|
| 5 | Substrate             | Polyvinyl alcohol with    |
|   |                       | quarternary ammonium      |
|   |                       | groups                    |
| ( | Column dimensions     | 150 x 2.0 mm              |
| ( | Column body           | PEEK                      |
| 5 | Standard flow         | 0.2 mL/min                |
| N | Maximum flow          | 0.6 mL/min                |
| N | Maximum pressure      | 20 MPa                    |
| F | Particle size         | 5 μm                      |
| ( | Organic modifier      | 0-100% (particularly      |
|   |                       | acetone, acetonitrile and |
|   |                       | methanol)                 |
| ŗ | oH range              | 3–12                      |

| pH range          | 3–12                       |
|-------------------|----------------------------|
| Temperature range | 20–60 °C                   |
| Capacity          | 17 μmol (Cl <sup>-</sup> ) |

### Eluent

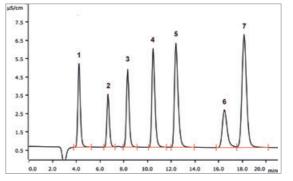
| Carbonate eluent  | Sodium carbonate | 763 mg/2 L | 3.6 mmol/L |  |
|-------------------|------------------|------------|------------|--|
| (standard eluent) |                  |            |            |  |
| Carbonate eluent  | Sodium carbonate | 878 mg/2 L | 4.0 mmol/L |  |
| (modified)        |                  |            |            |  |

### Care

Regeneration procedure for contamination with low-valency hydrophilic ions:

- 1. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 2. Rinse with 10x concentrated eluent (100 min at 0.1 mL/min)
- 3. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 4. Rinse with eluent (100 min at 0.1 mL/min)

Regeneration procedure for contamination with high-valency hydrophobic ions and organic contaminations:


- 1. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 2. Rinse with 100% acetonitrile (20 min at 0.1 mL/min)
- 3. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 4. Rinse with 10x concentrated eluent (100 min at 0.1 mL/min)
- 5. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 6. Rinse with eluent (100 min at 0.1 mL/min)

#### Storage

In the eluent at maximum +8 °C.



### Chromatograms





| Carbonate eluent, standard, 45 $^{\circ}\text{C}$ |          |       |   | Conc.     | (mg/L) |
|---------------------------------------------------|----------|-------|---|-----------|--------|
| 1                                                 | Fluoride | 2.00  | 5 | Nitrate   | 10.00  |
| 2                                                 | Chloride | 2.00  | 6 | Phosphate | 10.00  |
| 3                                                 | Nitrite  | 5.00  | 7 | Sulfate   | 10.00  |
| 4                                                 | Bromide  | 10.00 |   |           |        |
|                                                   |          |       | 1 |           |        |

Metrosep A Supp 16 S-Guard/2.0

| Carbo | nate eluent (mod.), s | standard | , 55 °C | Conc. (     | mg/L) |
|-------|-----------------------|----------|---------|-------------|-------|
| 1     | Fluoride              | 1.00     | 6       | Phosphate   | 1.00  |
| 2     | Chloride              | 1.00     | 7       | Sulfate     | 1.00  |
| 3     | Nitrite               | 1.00     | 8       | Thiosulfate | 1.00  |
| 4     | Bromide               | 1.00     | 9       | Thiocyanate | 1.00  |
| 5     | Nitrate               | 1.00     | 10      | Perchlorate | 1.00  |

6.1031.610

| Ordering information          |            |
|-------------------------------|------------|
| Metrosep A Supp 7 - 150/2.0   | 6.1006.640 |
| Metrosep A Supp 5 Guard/2.0   | 6.1006.600 |
| Metrosep A Supp 5 S-Guard/2.0 | 6.1006.610 |
| Metrosep A Supp 16 Guard/2.0  | 6.1031.600 |

### Metrosep A Supp 7 - 250/2.0 (6.1006.650)

Disinfection byproducts from water treatment are suspected not only of being health hazards but also of being carcinogenic. Oxyhalides have therefore become the subject of many investigations and standards (e.g., EPA 300.1 Part A+B, EPA 317.0, EPA 326.0). Of primary concern is bromate, which forms from bromide during the ozonization of drinking water.

The longest microbore version of the Metrosep A Supp 7 columns is a high-performance separation column for the parallel determination of standard anions, oxyhalides and dichloroacetic acid. With this column, these ions are determined with certainty and precision down to the lower  $\mu g/L$  range. High detection sensitivity is achieved by using the 5  $\mu$ m polyvinyl alcohol polymer, which allows extremely high plate numbers and therefore outstanding separation and detection properties. In addition, the separation can be adapted to the specific requirements of the application by modifying the temperature.

This microbore column is particularly suitable for use with an MS detector.

### **Applications**

- Standard anions
- EPA 300.1 Part A+B, simultaneous determination of standard anions and ClO<sub>2</sub>, ClO<sub>3</sub>, BrO<sub>3</sub> and DCAA (dichloroacetic acid)
- Isocratic separation of glycolate, acetate and formate
- Complex separation tasks
- Applications with gradient
- IC-M:

### **Technical information**

Substrate Polyvinyl alcohol with quarternary ammonium groups

Column dimensions 250 x 2.0 mm

Column body PEEK

Standard flow 0.2 mL/min

Maximum flow 0.4 mL/min

Maximum pressure 20 MPa Particle size 5 μm

Organic modifier 0–100% (particularly

acetone, acetonitrile and methanol)

pH range 3–12 Temperature range 20–60 °C Capacity 28  $\mu$ mol (Cl<sup>-</sup>)

Eluent

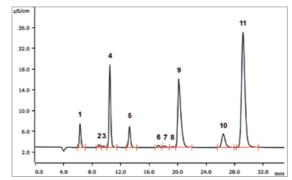
Carbonate eluent Sodium carbonate 763 mg/2 L 3.6 mmol/L (standard eluent)

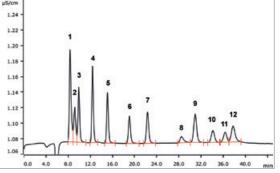
### Care

Regeneration procedure for contamination with low-valency hydrophilic ions:

- 1. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 2. Rinse with 10x concentrated eluent (100 min at 0.1 mL/min)
- 3. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 4. Rinse with eluent (100 min at 0.1 mL/min)

Regeneration procedure for contamination with highvalency hydrophobic ions and organic contaminations:


- 1. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 2. Rinse with 100% acetonitrile (20 min at 0.1 mL/min)
- 3. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 4. Rinse with 10x concentrated eluent (100 min at 0.1 mL/min)
- 5. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 6. Rinse with eluent (100 min at 0.1 mL/min)


#### Storage

In the eluent at maximum +8 °C.



### Chromatogram





| Carb | onate eluent, standar | d, 45 °C |    | Conc. (         | (mg/L) | Carb | onate eluent, standar | d, 45 °C |    | Conc. (   | (mg/L) |
|------|-----------------------|----------|----|-----------------|--------|------|-----------------------|----------|----|-----------|--------|
| 1    | Fluoride              | 2.0      | 7  | Chlorate        | 1.0    | 1    | Fluoride              | 0.1      | 7  | Nitrate   | 0.1    |
| 2    | Chlorite              | 1.0      | 8  | Dichloroacetate | 1.0    | 2    | Acetate               | 0.1      | 8  | Phosphate | 0.1    |
| 3    | Bromate               | 1.0      | 9  | Nitrate         | 30.0   | 3    | Fromate               | 0.1      | 9  | Sulfate   | 0.1    |
| 4    | Chloride              | 10.0     | 10 | Phosphate       | 15.0   | 4    | Chloride              | 0.1      | 10 | Malonate  | 0.1    |
| 5    | Nitrite               | 5.0      | 11 | Sulfate         | 40.0   | 5    | Nitrite               | 0.1      | 11 | Succinate | 0.1    |
| 5    | Bromide               | 1.0      |    |                 |        | 6    | Bromide               | 0.1      | 12 | Oxalate   | 0.1    |
|      |                       |          |    |                 |        |      |                       |          |    |           |        |

| Ordering information           |            |
|--------------------------------|------------|
| Metrosep A Supp 7 - 250/2.0    | 6.1006.650 |
| Metrosep A Supp 5 Guard/2.0    | 6.1006.600 |
| Metrosep A Supp 5 S-Guard/2.0  | 6.1006.610 |
| Metrosep A Supp 16 Guard/2.0   | 6.1031.600 |
| Metrosep A Supp 16 S-Guard/2.0 | 6.1031.610 |

### Metrosep A Supp 10 - 50/2.0 (6.1020.250)

The Metrosep A Supp 10 - 50/2.0 separation column is based on a high-capacity poly(styrene-co-divinylbenzene) copolymer with a particle size of only 4.6 µm. Temperature, flow and eluent composition can be used to modify the properties of the column to accommodate the current application directly. The 2 mm Metrosep A Supp 10 separation columns are packed with the same material as the corresponding 4 mm separation columns. The short length and associated relatively low overall capacity of this 50 mm column enable very rapid separations of standard anions.

The Metrosep A Supp 10 - 50/2.0 is well-suited to simple separation problems and uncomplicated matrices. Thanks to its low flow, this microbore separation column is ideally suitable for IC-MS applications.

### Applications

- Standard anions
- Simple separation problems
- Uncomplicated matrices
- Short analysis times
- IC-MS coupling

| Poly(styrene-co-          |
|---------------------------|
| divinylbenzene) with      |
| quaternary ammonium       |
| groups                    |
| 50 x 2.0 mm               |
| PEEK                      |
| 0.25 mL/min               |
| 1.3 mL/min                |
| 25 MPa                    |
| 4.6 µm                    |
| 0-100%                    |
| 0–14                      |
| 10-70 °C                  |
| 5 μmol (Cl <sup>-</sup> ) |
|                           |

### Eluent

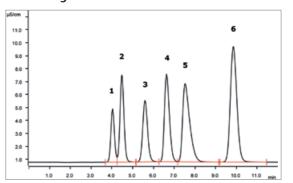
| Carbonate eluent  | Sodium hydrogen carbonate | 840 mg/2 L  | 5.0 mmol/L |
|-------------------|---------------------------|-------------|------------|
| (standard eluent) | Sodium carbonate          | 1060 mg/2 L | 5.0 mmol/L |

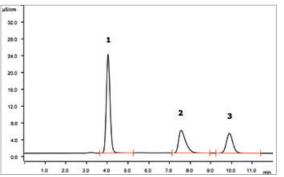
### Care

### Regeneration

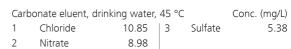
Rinse with 50 mL of a 0.05 mol/L solution of Na<sub>4</sub>EDTA at a flow rate of 0.12 mL/min. Then rinse with 0.1 mol/L addition of 1% acetic acid may be useful. NaOH at 0.12 mL/min for 1 h.

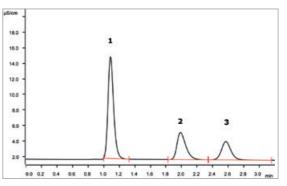
### Organic contaminants:


Rinse with 70% methanol at 0.12 mL/min for 12 h. The


### Storage

In the eluent





### Chromatograms





| Carbona | te eluent, standa | ,     | Conc. | (mg/L)  |       |
|---------|-------------------|-------|-------|---------|-------|
| 1 Ch    | nloride           | 2.00  | 4     | Bromide | 10.00 |
| 2 Ni    | trite             | 5.00  | 5     | Nitrate | 10.00 |
| 3 Ph    | nosphate          | 10.00 | 6     | Sulfate | 10.00 |





| Carb | Conc. (mg/L)   |              |   |         |      |
|------|----------------|--------------|---|---------|------|
| high | flow (1.0 mL/m | nin), 45 °C) |   |         |      |
| 1    | Chloride       | 2.48         | 3 | Sulfate | 1.28 |
| 2    | Nitrate        | 2.15         |   |         |      |

| Ordering information         |            |
|------------------------------|------------|
| Metrosep A Supp 10 - 50/2.0  | 6.1020.250 |
| Metrosep A Supp 10 Guard/2.0 | 6.1020.600 |

### Metrosep A Supp 10 - 75/2.0 (6.1020.270)

The Metrosep A Supp 10 - 75/2.0 separation column is based on a high-capacity poly(styrene-co-divinylbenzene) copolymer with a particle size of only 4.6 µm. This proven column concept optimized by Metrohm is characterized by its robust construction, great selectivity and outstanding separating efficiency. The 2 mm Metrosep A Supp 10 separation columns are packed with the same material as the corresponding 4 mm separation columns. Temperature, flow and eluent composition can be used to modify the properties of the column to accommodate the current application directly.

The capacity of the Metrosep A Supp 10 - 75/2.0 has been optimized with respect to two aspects: matrix and speed. A rapid baseline separation of the standard anions can also be achieved in samples of high ionic strength. Particularly suitable for IC-MS applications.

### Applications

- Standard anions
- IC-MS coupling
- Separation of sulfite and sulfate
- Fermentation samples

|            | information    |
|------------|----------------|
|            |                |
| recillical | IIIIOIIIIauoii |

| recinical information |                           |
|-----------------------|---------------------------|
| Substrate             | Poly(styrene-co-          |
|                       | divinylbenzene) with      |
|                       | quaternary ammonium       |
|                       | groups                    |
| Column dimensions     | 75 x 2.0 mm               |
| Column body           | PEEK                      |
| Standard flow         | 0.25 mL/min               |
| Maximum flow          | 1.1 mL/min                |
| Maximum pressure      | 25 MPa                    |
| Particle size         | 4.6 µm                    |
| Organic modifier      | 0-100%                    |
| pH range              | 0-14                      |
| Temperature range     | 10-70 °C                  |
| Capacity              | 8 µmol (Cl <sup>-</sup> ) |

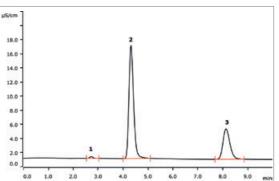
### Eluent

| Carbonate eluent  | Sodium hydrogen carbonate | 840 mg/2 L  | 5.0 mmol/L |
|-------------------|---------------------------|-------------|------------|
| (standard eluent) | Sodium carbonate          | 1060 mg/2 L | 5.0 mmol/L |

### Care

Regeneration

a flow rate of 0.12 mL/min. Then rinse with 0.1 mol/L addition of 1% acetic acid may be useful. NaOH at 0.12 mL/min for 1 h.


Organic contaminants:

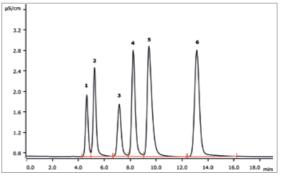
Rinse with 50 mL of a 0.05 mol/L solution of Na<sub>a</sub>EDTA at Rinse with 70% methanol at 0.12 mL/min for 12 h. The

Storage In the eluent

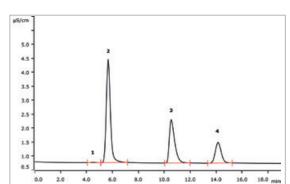


### Chromatograms




Carbonate eluent, fermentation broth

Conc. (g/L)


Dilution 1: 100, 45 °C

Chloride 0.025 | 3 2 Nitrite 6.461

Phosphate 1.249







| ) | Cark | oonate eluent, ( | drinking water, | 45 ° | C       | Conc. (mg/L) |
|---|------|------------------|-----------------|------|---------|--------------|
| ) | 1    | Fluoride         | n.q.            | 3    | Nitrate | 8.27         |
| ) | 2    | Chloride         | 9.02            | 4    | Sulfate | 4.20         |

### **Ordering information**

Metrosep A Supp 10 - 75/2.0 6.1020.270 6.1020.600 Metrosep A Supp 10 Guard/2.0

### Metrosep A Supp 10 - 100/2.0 (6.1020.210)

The Metrosep A Supp 10 - 100/2.0 separation column is based on a high-capacity poly(styrene-co-divinylbenzene) copolymer with a particle size of only 4.6 µm. The 2 mm Metrosep A Supp 10 separation columns are packed with the same material as the corresponding 4 mm separation columns. Temperature, flow and eluent composition can be used to modify the properties of the column to accommodate the current application directly.

The Metrosep A Supp 10 - 100/2.0 is the microbore column of choice for routine applications. Thanks to the high flow and pressure stability of this separation column, very rapid chromatograms with good separation of the ions can be achieved. The standard anions can thus be separated within less than three minutes. Particularly suitable for IC-MS applications.

### Applications

- Standard anions
- Simple separation problems
- Traces of cyanide and sulfide with PAD
- Uncomplicated matrices
- IC-MS coupling

| Technical information |                            |
|-----------------------|----------------------------|
| Substrate             | Poly(styrene-co-           |
|                       | divinylbenzene) with       |
|                       | quaternary ammonium        |
|                       | groups                     |
| Column dimensions     | 100 x 2.0 mm               |
| Column body           | PEEK                       |
| Standard flow         | 0.25 mL/min                |
| Maximum flow          | 0.9 mL/min                 |
| Maximum pressure      | 25 MPa                     |
| Particle size         | 4.6 µm                     |
| Organic modifier      | 0-100%                     |
| pH range              | 0-14                       |
| Temperature range     | 10-70 °C                   |
| Capacity              | 10 μmol (Cl <sup>-</sup> ) |
|                       |                            |

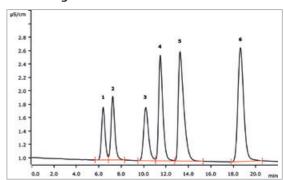
### Eluent

| Carbonate eluent      | Sodium hydrogen carbonate          | 840 mg/2 L  | 5.0 mmol/L   |
|-----------------------|------------------------------------|-------------|--------------|
| (standard eluent)     | Sodium carbonate                   | 1060 mg/2 L | 5.0 mmol/L   |
| Hydroxide/EDTA eluent | Sodium hydroxide<br>(c = 20 mol/L) | 10 mL/2 L   | 100 mmol/L   |
|                       | EDTA                               | 2.0 mg/2 L  | 0.007 mmol/L |

### Care

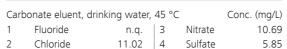
### Regeneration

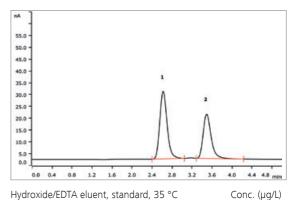
a flow rate of 0.12 mL/min. Then rinse with 0.1 mol/L addition of 1% acetic acid may be useful. NaOH at 0.12 mL/min for 1 h.


### Organic contaminants:

Rinse with 50 mL of a 0.05 mol/L solution of Na<sub>a</sub>EDTA at Rinse with 70% methanol at 0.12 mL/min for 12 h. The

### Storage In the eluent





### Chromatograms



| Carbo | nate eluent, standa | Conc. (mg/L) |   |         |       |
|-------|---------------------|--------------|---|---------|-------|
| 1     | Chloride            | 2.00         | 4 | Bromide | 10.00 |
| 2     | Nitrite             | 5.00         | 5 | Nitrate | 10.00 |
| 3     | Phosphate           | 10.00        | 6 | Sulfate | 10.00 |







| ) | Hyard | ixide/EDTA eluent, | standard, s | 3: |
|---|-------|--------------------|-------------|----|
| ) | 1     | Sulfide            | 10.00       |    |
|   | 2     | Cvanide            | 10.00       |    |

**Ordering information** Metrosep A Supp 10 - 100/2.0 6.1020.210 6.1020.600 Metrosep A Supp 10 Guard/2.0

### Metrosep A Supp 10 - 150/2.0 (6.1020.220)

The Metrosep A Supp 10 - 150/2.0 separation column is based on a high-capacity poly(styrene-co-divinylbenzene) copolymer with a particle size of only 4.6 µm. This proven column concept optimized by Metrohm is characterized by its robust construction, great selectivity and outstanding separating efficiency. The 2 mm Metrosep A Supp 10 separation columns are packed with the same material as the corresponding 4 mm separation columns. Temperature, flow and eluent composition can be used to modify the properties of the column to accommodate the current application directly.

The Metrosep A Supp 10 - 150/2.0 separation column is suitable for complex separation tasks with wide differences in concentrations. The microbore version exhibits low eluent consumption and is therefore particularly suitable for IC-MS applications.

### Applications

- Standard anions
- Universal applications
- Different matrices
- Transition metal complexes
- Chromium(VI) in toys (EU directive 2009/48/EC)
- IC-MS coupling

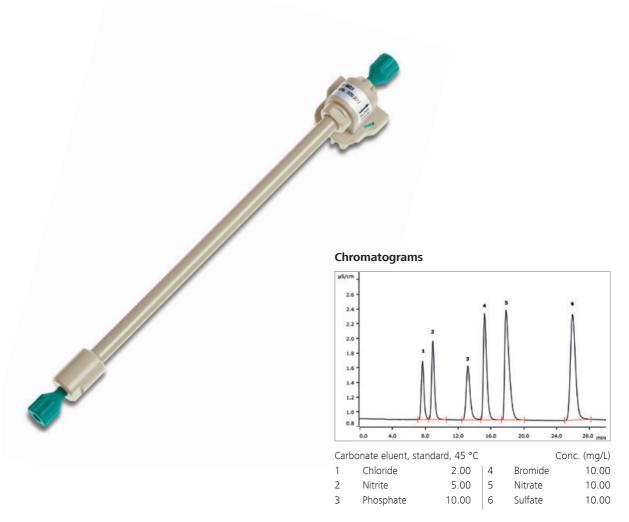
| Technical information |                      |
|-----------------------|----------------------|
| Substrate             | Poly(styrene-co-     |
|                       | divinylbenzene) with |
|                       | quaternary ammonium  |
|                       | groups               |
| Column dimensions     | 150 x 2.0 mm         |
| Column body           | PEEK                 |
| Standard flow         | 0.25 mL/min          |
| Maximum flow          | 0.7 mL/min           |
| Maximum pressure      | 25 MPa               |
| Particle size         | 4.6 μm               |
| Organic modifier      | 0-100%               |
| pH range              | 0-14                 |
| Temperature range     | 10-70 °C             |
| Capacity              | 15 μmol (Cl¯)        |

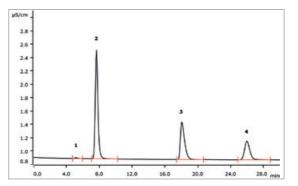
### Eluent

| Carbonate eluent        | Sodium hydrogen carbonate          | 840 mg/2 L  | 5.0 mmol/L |  |
|-------------------------|------------------------------------|-------------|------------|--|
| (standard eluent)       | Sodium carbonate                   | 1060 mg/2 L | 5.0 mmol/L |  |
| Dipicolinic acid eluent | Dipicolinic acid                   | 1.0 g/2 L   | 3.0 mmol/L |  |
|                         | Sodium sulfate                     | 1.42 g/2 L  | 10 mmol/L  |  |
|                         | Sodium hydroxide<br>(c = 20 mol/L) | 6.6 mL/2 L  | 66 mmol/L  |  |
|                         | Formic acid                        |             | pH = 4.33  |  |

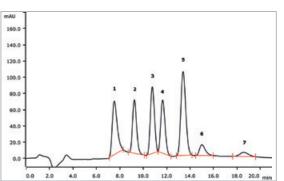
### Care

Regeneration


Column purification:


Rinse with 50 mL of a 0.05 mol/L solution of  $Na_4EDTA$  at addition of 1% acetic acid may be useful. a flow rate of 0.12 mL/min. Then rinse with 0.1 mol/L NaOH at 0.12 mL/min for 1 h. Storage

Organic contaminants:


Rinse with 70% methanol at 0.12 mL/min for 12 h. The

Storage In the eluent









| Dipico | olinic acid eluent, P | CR with PAR | R, 51 | 0 nm, 55 °C | Conc. (µg/L) |
|--------|-----------------------|-------------|-------|-------------|--------------|
| 1      | Iron(III)             | 12.40       | 5     | Cobalt      | 10.00        |
| 2      | Copper                | 10.00       | 6     | Cadmium     | 10.00        |
| 3      | Nickel                | 10.00       | 7     | Iron(II)    | 7.5          |
| 4      | Zinc                  | 10.00       |       |             |              |

| Ordering information         |            |
|------------------------------|------------|
| Metrosep A Supp 10 - 150/2.0 | 6.1020.220 |
| Metrosep A Supp 10 Guard/2.0 | 6.1020.600 |

### Metrosep A Supp 10 - 250/2.0 (6.1020.230)

The Metrosep A Supp 10 - 250/2.0 separation column is based on a high-capacity poly(styrene-co-divinylbenzene) copolymer with a particle size of only 4.6  $\mu$ m. This proven column concept optimized by Metrohm is characterized by its robust construction, great selectivity and outstanding separating efficiency. The 2 mm Metrosep A Supp 10 separation columns are packed with the same material as the corresponding 4 mm separation columns. Temperature, flow and eluent composition can be used to modify the properties of the column to accommodate the current application directly.

The Metrosep A Supp 10 - 250/2.0 has a very high capacity for a microbore column. It is suitable for samples with high ionic strength, for complex separation tasks and for analyses in which great differences in concentration between the individual components are present. Thanks to its low flow, this microbore separation column is ideal for IC-MS applications.

### **Applications**

- Standard anions
- Complex separation problems
- Difficult matrices
- Anions in concentrated acids
- Aggressive matrices
- IC-MS coupling

| Technical information |                            |
|-----------------------|----------------------------|
| Substrate             | Poly(styrene-co-           |
|                       | divinylbenzene) with       |
|                       | quaternary ammonium        |
|                       | groups                     |
| Column dimensions     | 250 x 2.0 mm               |
| Column body           | PEEK                       |
| Standard flow         | 0.25 mL/min                |
| Maximum flow          | 0.7 mL/min                 |
| Maximum pressure      | 25 MPa                     |
| Particle size         | 4.6 µm                     |
| Organic modifier      | 0-100%                     |
| pH range              | 0-14                       |
| Temperature range     | 10-70 °C                   |
| Capacity              | 25 μmol (Cl <sup>-</sup> ) |

#### Eluent

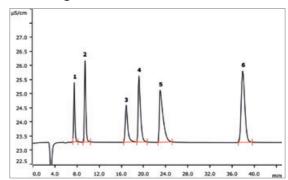
| Carbonate eluent        | Sodium hydrogen carbonate | 840 mg/2 L  | 5.0 mmol/L |
|-------------------------|---------------------------|-------------|------------|
| (standard eluent)       | Sodium carbonate          | 1060 mg/2 L | 5.0 mmol/L |
| Ammonium sulfate eluent | Ammonium sulfate          | 66.0 g/2 L  | 250 mmol/L |
|                         | Ammonium hydroxide        | 40 mL/2 L   | 100 mmol/L |
|                         | (c = 5.0  mol/L)          |             |            |

### Care

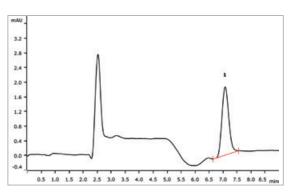
Regeneration

Column purification:

Rinse with 50 mL of a 0.05 mol/L solution of  $Na_4EDTA$  at a flow rate of 0.12 mL/min. Then rinse with 0.1 mol/L NaOH at 0.12 mL/min for 1 h.


Organic contaminants:

Rinse with 70% methanol at 0.12 mL/min for 12 h. The addition of 1% acetic acid may be useful.


Storage In the eluent



### Chromatograms



| Carl | oonate eluent, sta | Conc. (mg/L) |   |         |       |
|------|--------------------|--------------|---|---------|-------|
| 1    | Chloride           | 5.00         | 4 | Bromide | 10.00 |
| 2    | Nitrite            | 5.00         | 5 | Nitrate | 10.00 |
| 3    | Phosphate          | 10.00        | 6 | Sulfate | 10.00 |



Ammonium sulfate eluent, PCR with 1,5-diphenylcarbazide 530 nm, spiked drinking water, 50 °C Conc. (µg/L) 1 Chromate 0.2

### **Ordering information**

 Metrosep A Supp 10 - 250/2.0
 6.1020.230

 Metrosep A Supp 10 Guard/2.0
 6.1020.600

### Metrosep A Supp 16 - 100/2.0 (6.1031.210)

In the case of the microbore version of the Metrosep A Supp 16 - 100/2.0, lower flows are applied through the smaller inner diameter. Eluent consumption is reduced drastically as a result. The dwell time of the ions in the detector becomes longer and the sensitivity or the peak area is increased accordingly (with the same sample amount). Microbore separation columns are used together with the MSM-LC Rotor A (6.2844.000). The 2 mm Metrosep A Supp 16 separation columns are packed with the same material as the corresponding 4 mm separation columns. The short version of this column type enables extremely rapid separations.

The column is well-suited to applications with a high ionic load but which require only relatively low resolution. With its low eluent flow, this column is particularly suitable for IC-MS coupling.

### Applications

- Standard anions
- Universal applications
- Rapid analysis (standard anions in 5 min)
- IC-MS coupling

### **Technical information**

Substrate Poly(styrene-co-

divinylbenzene) with quaternary ammonium

groups

Column dimensions 100 x 2.0 mm

Column body PEEK
Standard flow 0.2 mL/min

Maximum flow 0.6 mL/min
Maximum pressure 16 MPa
Particle size 4.6 μm

Organic modifier 0–10%
pH range 0–13
Temperature range 10–70 °C

Capacity 20 µmol (Cl<sup>-</sup>)

#### Eluent

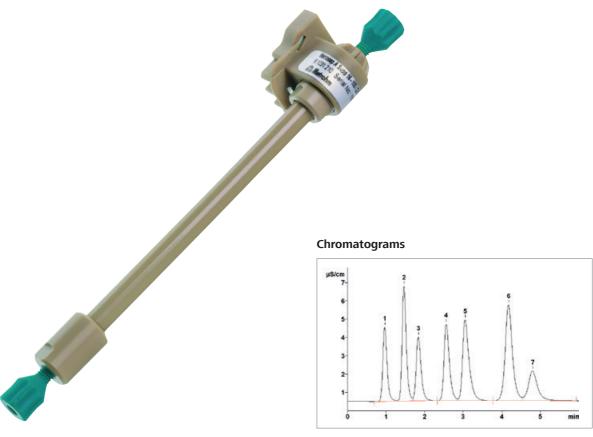
Carbonate/hydroxide eluent Sodium carbonate (standard eluent) Sodium hydroxide (c = 0.25 mol/L)

1590 mg/2 L 6.0 mL/2 L 7.5 mmol/L 0.75 mmol/L

### Care

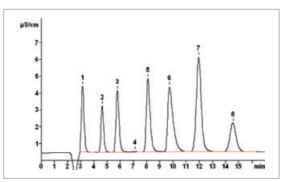
Regeneration

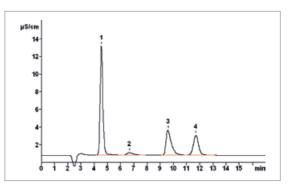
Rinse the column overnight (12 h) with standard eluent at low flow rate (0.1 mL/min).


Rinse the column with half of the standard flow in the opposite direction for 2 h with 15 mmol/L  $Na_2CO_3$  and then for 2 h with ultrapure water.

Eluent change

When installing or changing to eluents which have an organic modifier to avoid high backpressure, adjust the flow in small increments from 0.1 mL/min within one hour to match standard conditions while maintaining the direction of flow.


Storage


In the eluent



Carbonate/hydroxide eluent, standard, 40 °C,

| flow | rate 0.6 mL/min. |      |   | Cond      | c. (mg/L) |
|------|------------------|------|---|-----------|-----------|
| 1    | Fluoride         | 2.00 | 5 | Nitrate   | 10.0      |
| 2    | Chloride         | 5.00 | 6 | Sulfate   | 10.0      |
| 3    | Nitrite          | 5.00 | 7 | Phosphate | 10.0      |
| 4    | Bromide          | 10.0 |   |           |           |





| Carbo | nate/hydroxide eluei | 5°C ( | Conc. (mg/L) |           |       |
|-------|----------------------|-------|--------------|-----------|-------|
| 1     | Fluoride             | 2.00  | 5            | Bromide   | 10.00 |
| 2     | Chloride             | 2.00  | 6            | Nitrate   | 10.00 |
| 3     | Nitrite              | 5.00  | 7            | Sulfate   | 10.00 |
| 4     | System peak          | -     | 8            | Phosphate | 10.00 |

| Carbo | onate/hydroxide eluent, | , drinki | ng wa | ater, 45 °C | Conc. (mg/L |
|-------|-------------------------|----------|-------|-------------|-------------|
| 1     | Chloride                | 9.2      | 3     | Nitrate     | 9.7         |
| 2     | System peak             | -        | 4     | Sulfate     | 10.2        |

### Ordering information

 Metrosep A Supp 16 - 100/2.0
 6.1031.210

 Metrosep A Supp 16 Guard/2.0
 6.1031.600

 Metrosep A Supp 16 S-Guard/2.0
 6.1031.610

### Metrosep A Supp 16 - 150/2.0 (6.1031.220)

The microbore version of the Metrosep A Supp 16 - 150/2.0 is well-suited to medium-capacity separation problems. Eluent consumption is drastically reduced as a result of the smaller inner diameter of this column type and the correspondingly lower flows. As a result of the lower flows, the dwell time of the anions in the detector, and thus also the peak areas with identical sample amounts, are increased. Microbore separation columns are used together with the MSM-LC Rotor A (6.2844.000). The 2 mm Metrosep A Supp 16 separation columns are packed with the same material as the corresponding 4 mm separation columns. The medium version of this column type is used for universal applications.

The column is well-suited to applications with a high ionic load but which do not require the highest resolution. With its low eluent flow, this column is particularly suitable for IC-MS coupling.

### Applications

- Standard anions
- Universal applications
- Difficult matrices with high ionic strength
- Applications with gradient
- IC-MS coupling

### **Technical information**

Substrate Poly(styrene-codivinylbenzene) with

quaternary ammonium

groups

Column dimensions 150 x 2.0 mm

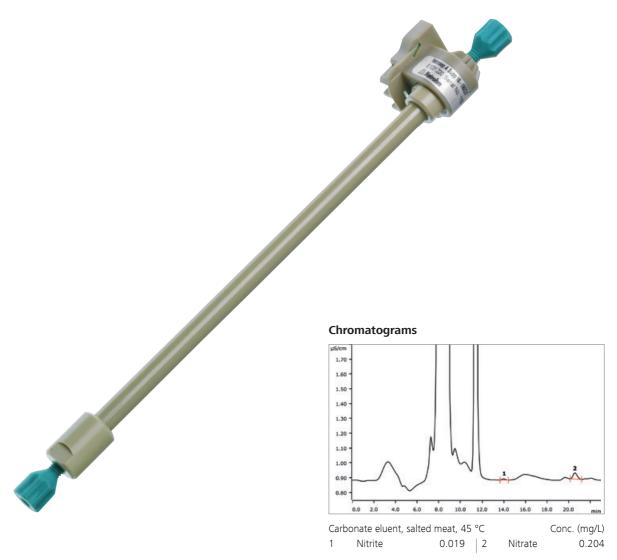
Column body PEEK Standard flow 0.2 mL/min Maximum flow 0.3 mL/min Maximum pressure 16 MPa Particle size 4.6 µm Organic modifier 0-10% pH range 0-13

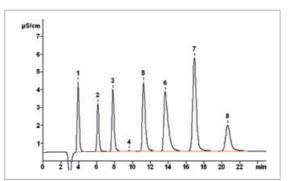
Temperature range 10-70 °C Capacity 29 μmol (Cl<sup>-</sup>)

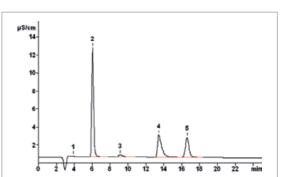
#### Eluent

| Carbonate/hydroxide eluent | Sodium carbonate  | 1590 mg/2 L | 7.5 mmol/L  |  |
|----------------------------|-------------------|-------------|-------------|--|
| (standard eluent)          | Sodium hydroxide  | 6.0 mL/2 L  | 0.75 mmol/L |  |
|                            | (c = 0.25  mol/L) |             |             |  |
| Carbonate eluent           | Sodium carbonate  | 763 mg/2 L  | 3.6 mmol/L  |  |

### Care


at low flow rate (0.1 mL/min).


Rinse the column with half of the standard flow in the opposite direction for 2 h with 15 mmol/L Na<sub>2</sub>CO<sub>3</sub> and the direction of flow. then for 2 h with ultrapure water.


Eluent change

Rinse the column overnight (12 h) with standard eluent When installing or changing to eluents which have an organic modifier to avoid high backpressure, adjust the flow in small increments from 0.1 mL/min to match standard conditions within one hour while maintaining

> Storage In the eluent







| Carbonate/hydroxide eluent, standard, 45 °C Conc. (mg/L) |             |      |   |           |       |  |  |
|----------------------------------------------------------|-------------|------|---|-----------|-------|--|--|
| 1                                                        | Fluoride    | 2.00 | 5 | Bromide   | 10.00 |  |  |
| 2                                                        | Chloride    | 2.00 | 6 | Nitrate   | 10.00 |  |  |
| 3                                                        | Nitrite     | 5.00 | 7 | Sulfate   | 10.00 |  |  |
| 4                                                        | System peak | _    | 8 | Phosphate | 10.00 |  |  |

| Car | bonate/hydroxide e | luent, drinkir | ng w | ater, 45 °C | Conc. (mg/L) |
|-----|--------------------|----------------|------|-------------|--------------|
| 1   | Fluoride           | n.q.           | 4    | Nitrate     | 9.7          |
| 2   | Chloride           | 9.2            | 5    | Sulfate     | 10.2         |
| 3   | System peak        | _              |      |             |              |

| Ordering information           |            |
|--------------------------------|------------|
| Metrosep A Supp 16 - 150/2.0   | 6.1031.220 |
| Metrosep A Supp 16 Guard/2.0   | 6.1031.600 |
| Metrosep A Supp 16 S-Guard/2.0 | 6.1031.610 |

### Metrosep A Supp 16 - 250/2.0 (6.1031.230)

The microbore version of the Metrosep A Supp 16 - 250 is well suited to high-capacity separation problems. Lower flows are applied due to the smaller inner diameter of this column type. Eluent consumption is reduced drastically as a result. The dwell time of the ions in the detector becomes longer and the sensitivity or the peak area is increased accordingly (with the same sample amount). Microbore separation columns are used with the MSM-LC Rotor A (6.2844.000). The 2 mm Metrosep A Supp 16 separation columns are packed with the same material as the corresponding 4 mm separation columns. The separation column is based on a surface-functionalized poly(styrene-co-divinylbenzene) copolymer. The functional groups are bonded covalently. The morphology of the anion exchanger results in unique selectivity. The highcapacity Metrosep A Supp 16 - 250/2.0 is used for solving complex problems.

The Metrosep A Supp 16 - 250/2.0 is characterized by outstanding resolution and solves the most difficult separation problems. With its low eluent flow, this column is particularly suitable for IC-MS coupling.

### Applications

- Standard anions
- Universal applications
- Azide/nitrate separation
- Divalent organic acids besides standard anions
- Matrices with high ionic strength
- Applications with gradient
- IC-MS coupling

| Technical | information |
|-----------|-------------|
|           |             |

Substrate Poly(styrene-codivinylbenzene) with quaternary ammonium groups

49 μmol (Cl<sup>-</sup>)

Column dimensions 250 x 2.0 mm Column body PEEK 0.2 mL/min Standard flow Maximum flow 0.3 ml/min Maximum pressure 16 MPa Particle size 4.6 µm Organic modifier 0-10% pH range 0-13 10-70 °C Temperature range

### Eluent

| Carbonate/hydroxide eluent | Sodium carbonate  | 1590 mg/2 L | 7.5 mmol/L  |
|----------------------------|-------------------|-------------|-------------|
| (standard eluent)          | Sodium hydroxide  | 6.0 mL/2 L  | 0.75 mmol/L |
|                            | (c = 0.25  mol/L) |             |             |

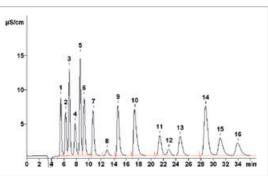
### Care

Regeneration

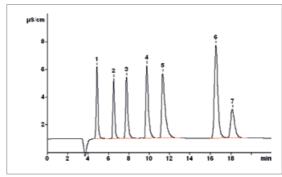
at low flow rate (0.1 mL/min).

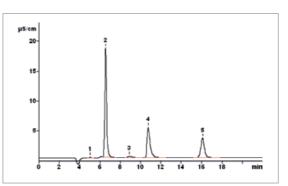
Rinse the column with half of the standard flow in the opposite direction for 2 h with 15 mmol/L Na<sub>2</sub>CO<sub>3</sub> and the direction of flow. then for 2 h with ultrapure water.

Eluent change


Capacity

Rinse the column overnight (12 h) with standard eluent When installing or changing to eluents which have an organic modifier to avoid high backpressure, adjust the flow in small increments from 0.1 mL/min to match standard conditions within one hour while maintaining


> Storage In the eluent








| Carbonate/hydroxide eluent, standard, 65 °C Conc. (mg/L) |                  |      |    |           |      |  |
|----------------------------------------------------------|------------------|------|----|-----------|------|--|
| 1                                                        | Fluoride         | 2.0  | 9  | Bromide   | 10.0 |  |
| 2                                                        | Glycolate        | 10.0 | 10 | Nitrate   | 10.0 |  |
| 3                                                        | Formate          | 10.0 | 11 | Malate    | 10.0 |  |
| 4                                                        | Lactate          | 10.0 | 12 | Succinate | 10.0 |  |
| 5                                                        | Chloride         | 5.0  | 13 | Malonate  | 10.0 |  |
| 6                                                        | Methanesulfonate | 10.0 | 14 | Sulfate   | 10.0 |  |
| 7                                                        | Nitrite          | 5.0  | 15 | Phosphate | 10.0 |  |
| 8                                                        | System peak      | -    | 16 | Maleate   | 10.0 |  |





| Carb | onate/hydroxide el | uent, stand | dard, | 45 °C     | Conc. (mg/L) | Carl | oonate/hydroxide  | eluent, |   |         | Conc. (mg/L) |
|------|--------------------|-------------|-------|-----------|--------------|------|-------------------|---------|---|---------|--------------|
| 1    | Fluoride           | 2.00        | 5     | Bromide   | 10.00        | drin | king water, 45 °C |         |   |         |              |
| 2    | Chloride           | 2.00        | 6     | Nitrate   | 10.00        | 1    | Fluoride          | n.q.    | 4 | Nitrate | 9.7          |
| 3    | Nitrite            | 5.00        | 7     | Sulfate   | 10.00        | 2    | Chloride          | 9.2     | 5 | Sulfate | 10.2         |
| 4    | System peak        | _           | 8     | Phosphate | 10.00        | 3    | System peak       | -       |   |         |              |

| Ordering information           |            |
|--------------------------------|------------|
| Metrosep A Supp 16 - 250/2.0   | 6.1031.230 |
| Metrosep A Supp 16 Guard/2.0   | 6.1031.600 |
| Metrosep A Supp 16 S-Guard/2.0 | 6.1031.610 |



## **Separation columns**



# IC separation columns for the determination of organic acids – ion-exclusion chromatography

### «Inverse suppression» – dissociation desired!

The use of the Metrohm MSM suppressor module is recommended to improve sensitivity in the detection of organic acids which are only weakly dissociated. A non-conventional approach is used: The suppressor is charged with lithium ions instead of hydrogen ions. As a result, it is possible to transfer the protonated and thus undissociated acids into their nearly completely dissociated salts. This increases sensitivity in the conductivity detector considerably. The construction is the same as with chemical suppression, except that the suppressor is regenerated with lithium chloride instead of with sulfuric acid. The MSM is used as a post-column reactor between the ion-exclusion column and the conductivity detector.

### Hamilton PRP-X300 - 250/4.0 (6.1005.030)

The Hamilton-PRP-X300 ion-exclusion column is a cationexchanger column with low capacity. The combination of a poly(styrene-co-divinylbenzene) copolymer with sulfonic acid groups as ion exchanger is ideal for the solution of simple separation problems. The column features the possibility of determining the salts of organic acids, in particular the very sensitive determination of formate.

### Applications

- Glycolic acid, monochloroacetic acid
- Simple matrices
- Simple separation problems
- Formate determination

### **Technical information**

Substrate Poly(styrene-co-

divinylbenzene) with

sulfonic acid groups

Column dimensions Column body

250 x 4.0 mm Stainless steel

Standard flow

1.0 mL/min

Maximum flow

8.0 mL/min

Maximum pressure Particle size

34 MPa 7 µm

Organic modifier

0-100% 1-13

5-60 °C

pH range Temperature range

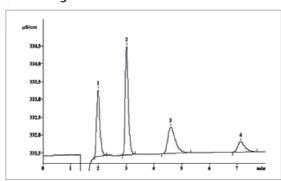
Eluents

Sulfuric acid (c = 0.1 mol/L) 10 mL/2 L 0.5 mmol/L Sulfuric acid eluent

### Care

### Regeneration

Divalent cations remain on the column and form complexes with citrate that falsify the citrate peak. Injection (weeks) in methanol/water (1:4) of 100 µL 0.1 mol/L Na<sub>2</sub>H<sub>2</sub>EDTA.


Rinse the column with 0.01 mol/L H<sub>2</sub>SO<sub>4</sub> with 20% methanol at a flow rate of 0.5 mL/min for 6 h.

### Storage

For short periods (days) in the eluent, for longer periods



### Chromatogram



| ulfuric acid eluent, s | tandard |   |         | Conc. (mg/L) |
|------------------------|---------|---|---------|--------------|
| Tartrate               | 10.00   | 3 | Lactate | 20.00        |
| Formate                | 10.00   | 4 | Acetate | 30.00        |

### Ordering information

Hamilton PRP-X300 - 250/4.0 6.1005.030 Metrosep RP 2 Guard/3.5 6.1011.030 Metrosep RP 3 Guard HC/4.0 6.1011.040

### Metrosep Organic Acids - 100/7.8 (6.1005.210)

The ion exclusion separation column for the determination of organic acids and weak mineral acids. The low capacity in comparison with the Metrosep Organic Acids - 250/7.8 (6.1005.200) allows the rapid separation of organic acids. This column is suitable primarily for small and medium concentrations in uncomplicated sample matrices.

### Applications

- Organic acids: Citrate, tartrate, malate, ascorbate,
- Short-chain fatty acids: Formate, acetate, propionate, butyrate, etc.
- F<sup>-</sup>, CO<sub>3</sub><sup>2-</sup>
- Simple matrices
- Simple separation problems

| Technical information |                      |
|-----------------------|----------------------|
| Substrate             | Poly(styrene-co-     |
|                       | divinylbenzene) with |
|                       | sulfonic acid groups |
| Column dimensions     | 100 x 7.8 mm         |
| Column body           | Stainless steel      |
| Standard flow         | 0.5 mL/min           |
| Maximum flow          | 0.6 mL/min           |
| Maximum pressure      | 7 MPa                |
| Particle size         | 9 μm                 |
| Organic modifier      | 0-20%                |
| pH range              | 1–13                 |
| Temperature range     | 5-90 °C              |
|                       |                      |

### Eluent

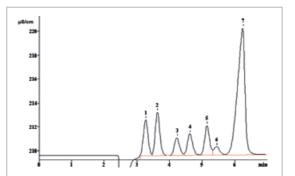
| Sulfuric acid eluent | Sulfuric acid ( $c = 2 \text{ mol/L}$ ) | 0.5 mL/2 L | 0.5 mmol/L  |  |
|----------------------|-----------------------------------------|------------|-------------|--|
| (standard eluent)    | Acetone                                 | 300 mL/2 L | 15%         |  |
| Oxalic acid eluent   | Oxalic acid                             | 45 mg/2 L  | 0.25 mmol/L |  |

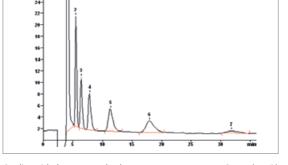
### Care

Column purification: Rinse the column in the opposite direction with 20% acetonitrile in 0.01 mol/L H<sub>2</sub>SO<sub>4</sub> at a flow rate of 0.1 mL/min for 4 hours at 65 °C.

### Contaminations with metals:

at a flow rate of 0.1 mL/min.


### Organic contaminants:


Rinse the column in the opposite direction with approx. 30 mL 0.01 mol/L H<sub>2</sub>SO<sub>4</sub>/acetonitrile (80/20) at a flow rate of 0.1 mL/min.

If retention times are shortened: Rinse the column in the For short periods (days) in the eluent, for longer periods opposite direction with approx. 30 mL 0.1 mol/L H<sub>2</sub>SO<sub>4</sub> (weeks) in ultrapure water. The column can be stored in a refrigerator at no colder than +4 °C.



### Chromatograms





| Sulf | furic acid eluent, s | standard |   | Со          | nc. (mg/L |
|------|----------------------|----------|---|-------------|-----------|
| 1    | Tartrate             | 25.0     | 5 | Formate     | 20.0      |
| 2    | Malate               | 50.0     | 6 | Acetate     | 100.0     |
| 3    | Succinate            | 100.0    | 7 | System peak | -         |
| 4    | Lactate              | 50.0     |   |             |           |

| .) Oxa | alic acid eluent, sta | ndard |   | Con      | c. (mg/L) |
|--------|-----------------------|-------|---|----------|-----------|
| 0 1    | Acetate               | 10.0  | 5 | Caproate | 10.0      |
| 2      | Propionate            | 10.0  | 6 | Enantate | 10.0      |
| - 3    | Butyrate              | 10.0  | 7 | Octanate | 10.0      |
| 4      | Valerate              | 10.0  |   |          |           |

| Ordering information             |            |
|----------------------------------|------------|
| Metrosep Organic Acids - 100/7.8 | 6.1005.210 |
| Metrosep Organic Acids Guard/4.6 | 6.1005.250 |

### Metrosep Organic Acids - 250/7.8 (6.1005.200)

The Metrosep Organic Acids - 250/7.8 is is a polymer-based cation-exchanger column. It is the high-performance column for the determination of organic acids and for the solution of difficult and complex separation problems. In addition, carbonate (with inverse suppression), fluoride (hydrofluoric acid), and phosphate (phosphoric acid) can be determined along with organic acids. In comparison with the Hamilton PRP-X300 - 250/4.0, the Metrosep Organic Acids column - 250/7.8 has greater capacity and enhanced selectivity.

### **Applications**

- Organic acids: Citrate, tartrate, malate, ascorbate, succinate
- Short-chain fatty acids: Formate, acetate, propionate, butyrate, etc.
- F<sup>-</sup>, PO<sub>4</sub> <sup>3-</sup>, CO<sub>3</sub> <sup>2-</sup>
- Difficult matrices
- Difficult separation problems

| Technical information |                      |
|-----------------------|----------------------|
| Substrate             | Poly(styrene-co-     |
|                       | divinylbenzene) with |
|                       | sulfonic acid groups |
| Column dimensions     | 250 x 7.8 mm         |
| Column body           | Stainless steel      |
| Standard flow         | 0.5 mL/min           |
| Maximum flow          | 0.6 mL/min           |
| Maximum pressure      | 7 MPa                |
| Particle size         | 9 μm                 |
| Organic modifier      | 0-20%                |
| pH range              | 1–13                 |
| Temperature range     | 5-90 °C              |

#### Eluent

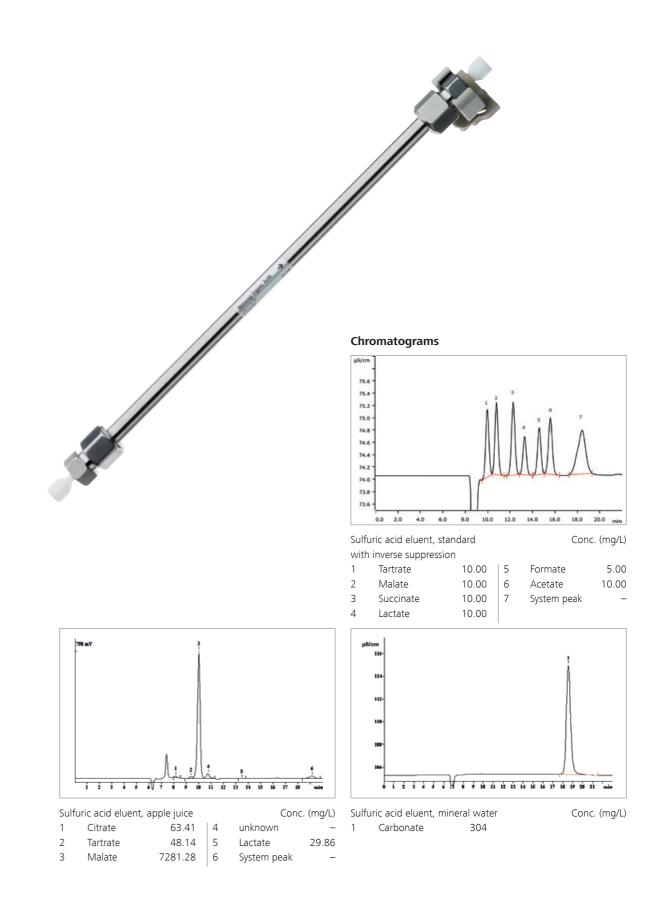
| Sulfuric acid eluent | Sulfuric acid ( $c = 2 \text{ mol/L}$ ) | 0.5 mL/2 L | 0.5 mmol/L |
|----------------------|-----------------------------------------|------------|------------|
| (standard eluent)    | Acetone                                 | 300 mL/2 L | 15%        |

### Care

#### Regeneration

Column purification: Rinse the column in the opposite direction with 20% acetonitrile in 0.01 mol/L  $\rm H_2SO_4$  at a flow rate of 0.1 mL/min for 4 hours at 65 °C.

### Contaminations with metals:


If retention times are shortened: Rinse the column in the opposite direction with approx. 30 mL 0.1 mol/L  $\rm H_2SO_4$  at a flow rate of 0.1 mL/min.

### Organic contaminants:

Rinse the column in the opposite direction with approx. 30 mL 0.01 mol/L  $H_2SO_4$ /acetonitrile (80/20) at a flow rate of 0.1 mL/min.

#### Storage

For short periods (days) in the eluent, for longer periods (weeks) in ultrapure water. The column can be stored in a refrigerator at no colder than +4 °C.



| Ordering information             |            |
|----------------------------------|------------|
| Metrosep Organic Acids - 250/7.8 | 6.1005.200 |
| Metrosep Organic Acids Guard/4.6 | 6.1005.250 |



## Separation columns



IC carbohydrate-separation columns – anionexchange chromatography applying pulsed amperometric detection (PAD)

### Metrosep Carb 2 - 100/4.0 (6.1090.410)

The Metrosep Carb 2 - 100/4.0 IC column is particularly suitable for the determination of carbohydrates using alkaline eluents and pulsed amperometric detection. The high-capacity anion exchange column is based on a poly(styrene-co-divinylbenzene) copolymer. It is stable in the range of pH = 0-14 and provides separation of glucose, fructose, sucrose and lactose. It is also suitable for the analysis of some sugar alcohols and oligosaccharides. Short analysis times can be achieved on the 100 mm version of the Metrosep Carb 2 separation column.

### Applications

- Monosaccharides
- Disaccharides
- Sugar alcohols
- Oligosaccharides
- Simple separation problems
- Very rapid separations

### **Technical information**

Substrate Poly(styrene-co-

> divinylbenzene) with quaternary ammonium

groups

100 x 4.0 mm Column dimensions

Column body PEEK Standard flow 0.8 mL/min Maximum flow 1.6 mL/min Maximum pressure 20 MPa Particle size 5.0 um

Organic modifier In the eluent: 0-50 %

> acetonitrile or methanol In the sample: 0-100 % acetone, acetonitrile or

methanol

pH range 0-14 20-60 °C Temperature range

#### Eluent

| Hydroxide/acetate eluent | Sodium hydroxide ( $c = 20 \text{ mol/L}$ ) 10 | 0 mL/2 L     | 100 mmol/L |
|--------------------------|------------------------------------------------|--------------|------------|
| (standard eluent)        | 10                                             | 640.7 mg/2 L | 10 mmol/L  |

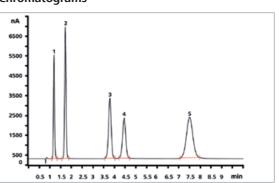
### Note

- 1. Use a flow ramp to establish the standard flow in the Inorganic contamination: column within 5 min.
- 30 °C.

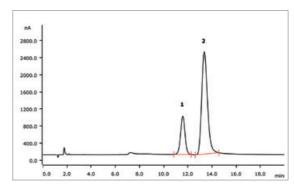
### Care

Organic contamination:

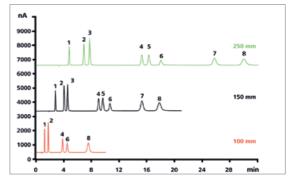
Rinse the column in the flow direction with standard eluent in 50% acetonitrile at a flow rate of 0.5 mL/min for 3 h.


Rinse the column in the flow direction with a mixture of 2. Rinse the column with the desired eluent for 2 h at 100 mmol/L sodium hydroxide and 500 mmol/L sodium acetate at a flow rate of 0.5 mL/min for at least 3 h.

> After regeneration, rinse the column with standard eluent for at least 3 h.


In the standard eluent




### Chromatograms



| Hyd | roxide/acetate e | eluent, standar | d, 30 | ) °C     | Conc. (mg/L) |
|-----|------------------|-----------------|-------|----------|--------------|
| 1   | Inositol         | 2.5             | 4     | Fructose | 5.0          |
| 2   | Arabitol         | 5.0             | 5     | Sucrose  | 15.0         |
| 3   | Glucose          | 5.0             |       |          |              |







Hydroxide/acetate eluent, standard,

| comparison of the various column lengths |          |     |   |          | Conc. (mg/L |
|------------------------------------------|----------|-----|---|----------|-------------|
| 1                                        | Inositol | 2.5 | 5 | Xylose   | 5.0         |
| 2                                        | Arabitol | 5.0 | 6 | Fructose | 5.0         |
| 3                                        | Sorbitol | 5.0 | 7 | Lactose  | 10.0        |
| 4                                        | Glucose  | 5.0 | 8 | Sucrose  | 15.0        |

| Ordering information        |            |
|-----------------------------|------------|
| Metrosep Carb 2 - 100/4.0   | 6.1090.410 |
| Metrosep Carb 2 Guard/4.0   | 6.1090.500 |
| Metrosep Carb 2 S-Guard/4.0 | 6.1090.510 |

### Metrosep Carb 2 - 150/4.0 (6.1090.420)

The Metrosep Carb 2 - 150/4.0 IC column is particularly suitable for the determination of carbohydrates using alkaline eluents and pulsed amperometric detection. The anion exchange column is based on a poly(styrene-codivinylbenzene) copolymer. It is stable in the range of pH = 0-14 and provides separation of monosaccharides and disaccharides. It is also suitable for the analysis of sugar alcohols, anhydrous sugars, oligosaccharides, etc. The column capacity has been optimized to enable the combination of rapid separations and excellent separation properties.

### Applications

- Monosaccharides
- Disaccharides
- Sugar alcohols
- Anhydrosugars
- Oligosaccharides
- Rapid separations

| Technical | information |
|-----------|-------------|
|           |             |

Substrate Poly(styrene-co-

divinylbenzene) with quaternary ammonium

groups

Column dimensions 150 x 4.0 mm

PEEK Column body Standard flow 0.5 mL/min Maximum flow 1.2 mL/min

Maximum pressure 20 MPa Particle size 5.0 µm

Organic modifier In the eluent: 0-50 %

> acetonitrile or methanol In the sample: 0-100 % acetone, acetonitrile or

methanol

pH range 0-14 20-60 °C Temperature range

### Eluent

| Hydroxide/acetate eluent    | Sodium hydroxide ( $c = 20 \text{ mol/L}$ ) | 10 mL/2 L     | 100 mmol/L |
|-----------------------------|---------------------------------------------|---------------|------------|
| (standard eluent)           | Sodium acetate                              | 1640.7 mg/2 L | 10 mmol/L  |
| Hydroxide eluent            | Sodium hydroxide (c = 20 mol/L)             | 1.0 mL/2 L    | 20 mmol/L  |
| Hydroxide/acetate eluent    | Sodium hydroxide (c = 20 mol/L)             | 0.5 mL/2 L    | 5 mmol/L   |
| (modified)                  | Sodium acetate                              | 328.1 mg/2 L  | 2 mmol/L   |
| Hydroxide eluent (modified) | Sodium hydroxide (c = 20 mol/L)             | 5.0 mL/2 L    | 100 mmol/L |

#### Note

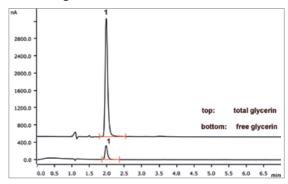
- 1. Use a flow ramp to establish the standard flow in the column within 5 min.
- eluent.

### Care

Organic contamination:

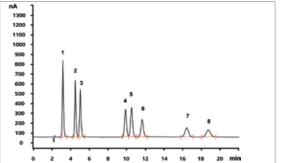
Rinse the column in the flow direction with standard eluent in 50% acetonitrile at a flow rate of 0.5 mL/min for Storage 3 h.

Inorganic contamination:


Rinse the column in the flow direction with a mixture of 2. Rinse the column for 2 h at 30 °C with the desired 100 mmol/L sodium hydroxide and 500 mmol/L sodium acetate at a flow rate of 0.5 mL/min for at least 5 h.

> After regeneration, rinse the column with standard eluent for at least 5 h.

In the standard eluent




### Chromatograms



Hydroxide eluent, (modified), ASTM D 7591, Conc. (mg/kg) free and total glycerin in biodiesel

1 Free glycerin 6.52 | 2 Total glycerin 98.15



1.0 | 5 Xylose

Fructose

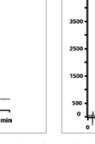
Lactose

Sucrose

1.0 6

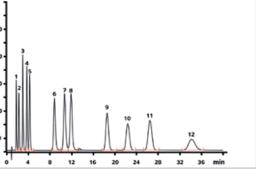
1.0 7

1.0 8

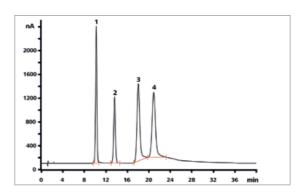

Hydroxide/acetate eluent, standard, 30 °C

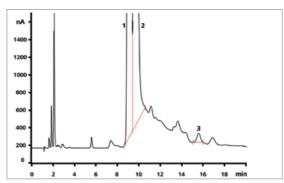
Inositol

Arabitol


Sorbitol

Glucose





1.0

|       | 5    | <u>"</u> | WL_    | $ \bot $ | W.    |       | J١ |
|-------|------|----------|--------|----------|-------|-------|----|
|       |      | 1        | 4      | 8        | 12    | 16    |    |
| ng/L) | Нус  | droxic   | le elu | ent, :   | stand | lard, | ar |
| 1.0   | in a | eroso    | ols, 4 | 5°C      |       |       |    |
| 1.0   | 1    | Inos     | sitol  |          |       |       | 0. |
| 1.0   | 2    | Eryt     | hrito  |          |       |       | 0. |



| Нус  | droxide eluent, star | gars Co | onc. (mg/L) |            |     |
|------|----------------------|---------|-------------|------------|-----|
| in a | erosols, 45 °C       |         |             |            |     |
| 1    | Inositol             | 0.6     | 7           | Mannosan   | 3.2 |
| 2    | Erythritol           | 0.6     | 8           | Galactosan | 3.2 |
| 3    | Arabitol             | 1.3     | 9           | Rhamnose   | 3.2 |
| 4    | Sorbitol             | 1.3     | 10          | Glucose    | 3.2 |
| 5    | Mannitol             | 1.3     | 11          | Xylose     | 3.2 |
| 6    | Levoglucosan         | 3.2     | 12          | Sucrose    | 3.2 |





Hydroxide/acetate eluent, (mod.), standard, 35 °C

| 1 | Galactose   | 5.0   4 | N-acetyl-     |      |
|---|-------------|---------|---------------|------|
| 2 | Mannose     | 5.0     | galactosamine | 20.0 |
| 3 | N-acetyl-   |         |               |      |
|   | alucosamine | 20.0    |               |      |

Hydroxide/acetate eluent, (mod.), lactose-free milk, diluted 1: 100, Inline Dialysis spiked with 100 mg/L Lactose, 28 °C Conc. (mg/L) 100.0 Galactose n.q. | 3 Lactose Glucose n.q.

| Ordering information        |            |
|-----------------------------|------------|
| Metrosep Carb 2 - 150/4.0   | 6.1090.420 |
| Metrosep Carb 2 Guard/4.0   | 6.1090.500 |
| Metrosep Carb 2 S-Guard/4.0 | 6.1090.510 |

### Metrosep Carb 2 - 250/4.0 (6.1090.430)

The Metrosep Carb 2 - 250/4.0 IC column is particularly suitable for the determination of carbohydrates using alkaline eluents and pulsed amperometric detection. The high-capacity anion exchange column is based on a poly(styrene-co-divinylbenzene) copolymer. It is stable in the range of pH = 0-14 and provides separation of monosaccharides and disaccharides. It is also suitable for the analysis of sugar alcohols, anhydrous sugars, amino sugars, etc. The 250 mm version of the Metrosep Carb 2 separation column is optimized for complex separations.

### Applications

- Monosaccharides
- Disaccharides
- Sugar alcohols
- Anhydrosugars
- Difficult matrices
- Complex separations

| <b>Technical information</b> |                          |
|------------------------------|--------------------------|
| Substrate                    | Poly(styrene-co-         |
|                              | divinylbenzene) with     |
|                              | quaternary ammonium      |
|                              | groups                   |
| Column dimensions            | 250 x 4.0 mm             |
| Column body                  | PEEK                     |
| Standard flow                | 0.5 mL/min               |
| Maximum flow                 | 0.8 mL/min               |
| Maximum pressure             | 20 MPa                   |
| Particle size                | 5.0 μm                   |
| Organic modifier             | In the eluent: 0-50 %    |
|                              | acetonitrile or methanol |
|                              | In the sample: 0-100 %   |
|                              | acetone, acetonitrile or |
|                              | methanol                 |
| pH range                     | 0-14                     |
| Temperature range            | 20-60 °C                 |

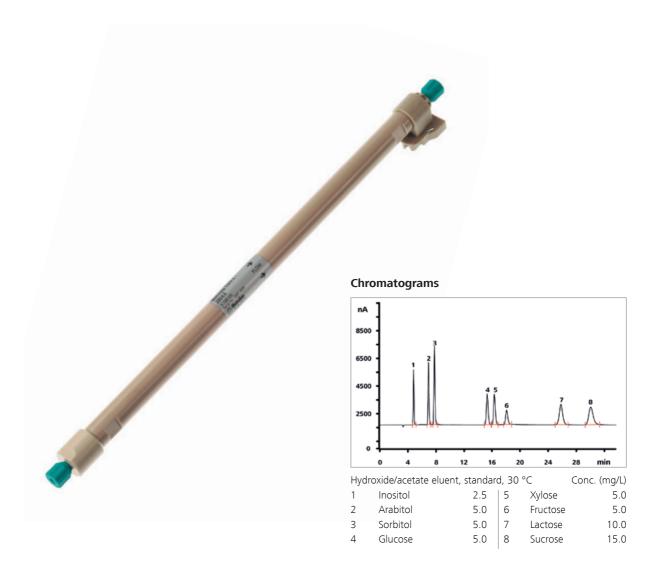
#### Eluent

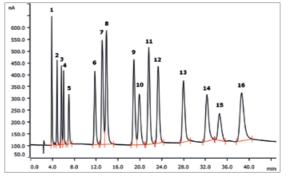
| Hydroxide/acetate eluent | Sodium hydroxide ( $c = 20 \text{ mol/L}$ ) | 10 mL/2 L     | 100 mmol/L |
|--------------------------|---------------------------------------------|---------------|------------|
| (standard eluent)        | Sodium acetate                              | 1640.7 mg/2 L | 10 mmol/L  |
| Hydroxide/acetate eluent | Sodium hydroxide (c = 20 mol/L)             | 0.5 mL/2 L    | 5 mmol/L   |
| (modified)               | Sodium acetate                              | 328.1 mg/2 L  | 2 mmol/L   |

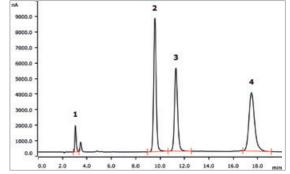
### Note

- 1. Use a flow ramp to establish the standard flow in the Inorganic contamination: column within 5 min.
- 30 °C.

### Care


Organic contamination:


Rinse the column in the flow direction with standard eluent in 50% acetonitrile at a flow rate of 0.5 mL/min for 7 h.


Rinse the column in the flow direction with a mixture of 2. Rinse the column with the desired eluent for 2 h at 100 mmol/L sodium hydroxide and 500 mmol/L sodium acetate at a flow rate of 0.5 mL/min for at least 7 h.

> After regeneration, rinse the column with standard eluent for at least 7 h.

In the standard eluent







|      | 0.0 -0.0 0.0 12    |              | 8-770 | 2010 3210 30 | 10 1010  | min  |
|------|--------------------|--------------|-------|--------------|----------|------|
| ,    | roxide/acetate elu | ent, (mod.), |       | (            | Conc. (m | ıg/L |
| Stan | dard, 40 °C        |              |       |              |          |      |
| 1    | Inositol           | 0.5          | 9     | Fucose       |          | 2.0  |
| 2    | Xylitol            | 0.5          | 10    | Sucrose      |          | 2.0  |
| 3    | Sorbitol           | 0.5          | 11    | Galactose    |          | 2.0  |
| 4    | Mannitol           | 0.5          | 12    | Glucose      |          | 2.0  |
| 5    | Lactitol           | 0.5          | 13    | Mannose      |          | 2.0  |
| 6    | Levoglucosan       | 2.0          | 14    | Sorbose      |          | 5.0  |
| 7    | Mannosan           | 2.0          | 15    | Fructose     |          | 5.0  |
| 8    | Galactosan         | 2.0          | 16    | Lactose      |          | 5.0  |
|      |                    |              | 1     |              |          |      |

|     | 0.0     | 2.0   | 4.0    | 6.0   | 8.0   | 10.0    | 12.0 | 14.0   | 16.0 | 18.0  | mir |
|-----|---------|-------|--------|-------|-------|---------|------|--------|------|-------|-----|
| Hyd | Iroxide | /acet | ate el | uent, | orang | e juice | 5    |        |      | Conc. | (g/ |
| 1   | Ino     | sitol |        |       | 1.5   | 5       | F    | ructos | е    |       | 23. |
| 2   | Glu     | cose  |        |       | 20.6  | 6       | S    | ucrose | 5    |       | 42. |

| Ordering information        |            |
|-----------------------------|------------|
| Metrosep Carb 2 - 250/4.0   | 6.1090.430 |
| Metrosep Carb 2 Guard/4.0   | 6.1090.500 |
| Metrosep Carb 2 S-Guard/4.0 | 6.1090.510 |

### Hamilton RCX-30 - 250/4.6 (6.1018.000)

The Hamilton RCX-30 - 250/4.6 is a column for the separation of monosaccharides, disaccharides, and sugar alcohols. It is an anion exchange column based on poly(styrene-co-divinylbenzene) resin. The Hamilton RCX-30 - 250/4.6 can be used for universal applications.

The Hamilton RCX-30 - 250/4.6 separation column excels in an outstanding separation of fructose and lactose. The column also offers the advantage that flows of up to 2 mL/min can be used in order to accelerate the chromatography. It is preferred for the determination of small carbohydrates (monosaccharides, disaccharides, and sugar alcohols).

### Applications

- Monosaccharides
- Disaccharides
- Sugar alcohols
- Difficult separation problems
- Difficult matrices

### **Technical information**

Substrate Poly(styrene-co-

divinylbenzene) copolymer

with quaternary ammonium groups

Column dimensions 250 x 4.6 mm

Column body PEEK Standard flow 1.0 mL/min Maximum flow 2.0 mL/min

Maximum pressure 34 MPa Particle size 7 µm

1-13 (T>35 °C max. pH 8) pH range

20-60 °C Temperature range

### Eluent

Hydroxide eluent Sodium hydroxide (c = 20 mol/L) 15 mL/2 L 150 mmol/L (standard eluent)

### Care

Rinse the column with 150 mL 0.1 mol/L NaOH at a flow In ultrapure water with 1 mmol/L sodium azide rate of 1 mL/min.

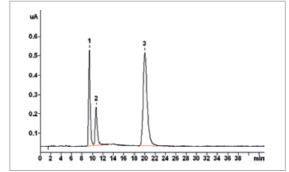
### Storage

2500 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 min Hydroxide eluent, standard Conc. (mg Inositol 5.00 | 6 Glucose 10. 10.00 10.0 Arabitol Fructose

10.00 8

10.00

10.00 9 Sucrose


Lactose

### Chromatograms

Sorbitol

Fucose

Arabinose



| (mg/L) | Нус | lroxide eluent, bai | nana 1.1 g/2 L |         | Conc. (mg/g) |
|--------|-----|---------------------|----------------|---------|--------------|
| 10.00  | 1   | Glucose             | 15   3         | Sucrose | 71           |
| 10.00  | 2   | Fructose            | 11             |         |              |
| 10.00  |     |                     | 1              |         |              |
| 10.00  |     |                     |                |         |              |

| Ordering information       |            |
|----------------------------|------------|
| Hamilton RCX-30 - 250/4.6  | 6.1018.000 |
| Metrosep RP 2 Guard/3.5    | 6.1011.030 |
| Metrosep RP 3 Guard HC/4.0 | 6.1011.040 |



# Separation columns



Microbore IC carbohydrate-separation columns for lower eluent consumption and greater sensitivity

## Metrosep Carb 2 - 100/2.0 (6.01090.210)

The Metrosep Carb 2 - 100/2.0 column is the short microbore version of the Metrosep Carb 2 columns and is particularly suitable for the determination of carbohydrates using alkaline eluents and pulsed amperometric detection. The high-capacity anion exchanger column is based on a poly(styrene-co-divinylbenzene) copolymer. It is stable in the range of pH = 0–14 and provides separation of glucose, fructose, and sucrose. It is also suitable for the analysis of some sugar alcohols and oligosaccharides. Short analysis times can be achieved on the 100 mm version of the Metrosep Carb 2 separation column.

With its low eluent flow, this column is particularly suitable for IC-MS coupling.

#### Applications

- Monosaccharides
- Disaccharides
- Sugar alcohols
- Oligosaccharides
- Simple separation problems
- Very rapid separations
- Anions in sea water
- IC-MS

| Technical information |                          |
|-----------------------|--------------------------|
| Substrate             | Poly(styrene-co-         |
|                       | divinylbenzene) with     |
|                       | quaternary ammonium      |
|                       | groups                   |
| Column dimensions     | 100 x 2.0 mm             |
| Column body           | PEEK                     |
| Standard flow         | 0.2 mL/min               |
| Maximum flow          | 0.7 mL/min               |
| Maximum pressure      | 20 MPa                   |
| Particle size         | 5.0 μm                   |
| Organic modifier      | In the eluent: 0-50 %    |
|                       | acetonitrile or methanol |
|                       | In the sample: 0–100 %   |
|                       | acetone, acetonitrile or |
|                       | methanol                 |
| pH range              | 0-14                     |
| Temperature range     | 20-60 °C                 |

#### Eluents

| Hydroxide/acetate eluent | Sodium hydroxide   | 10 mL/2 L     | 100 mmol/L |
|--------------------------|--------------------|---------------|------------|
| (standard eluent)        | (c = 20  mol/L)    |               |            |
|                          | Sodium acetate     | 1640.7 mg/2 L | 10 mmol/L  |
| Sodium chloride eluent   | Sodium chloride    | 20 g/2 L      | 10 g/L     |
| Ammonium nitrate eluent  | Ammonium nitrate   | 16.0 g/2 L    | 100 mmol/L |
|                          | Ammonium hydroxide |               | pH = 9.0   |

#### Care

## Regeneration

Note

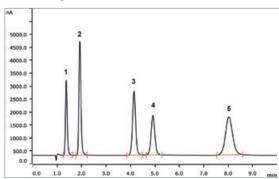
- 1. Use a flow ramp to establish the standard flow in the column within 5 min.
- 2. Rinse the column with the desired eluent for 2 h at 30  $^{\circ}$ C.

#### Organic contamination:

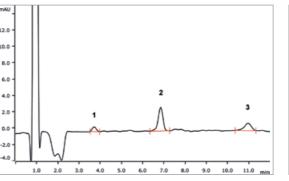
Rinse the column in the flow direction with 25 mL of solution (standard eluent in 50% acetonitrile) at a flow rate of 0.13 mL/min.

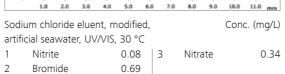
#### Inorganic contamination:

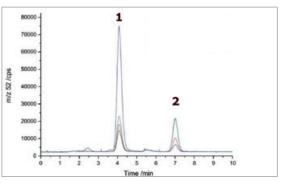
Rinse the column in the flow direction with a mixture of 100 mmol/L sodium hydroxide and 500 mmol/L sodium acetate at a flow rate of 0.13 mL/min for at least 7 h.


After regeneration, rinse the column with standard eluent for at least 7 h.

#### Storage


In the standard eluent





#### Chromatograms



| Hydroxide/acetate eluent, standard, 30 °C |          |     |   |          | Conc. (mg/L) |
|-------------------------------------------|----------|-----|---|----------|--------------|
| 1                                         | Inositol | 2.5 | 4 | Fructose | 5.0          |
| 2                                         | Arabitol | 5.0 | 5 | Sucrose  | 15.0         |
| 3                                         | Glucose  | 5.0 |   |          |              |







| Am  | monium  | n nitrate eluent, star | ndard, |        | Conc. (µg/L)  |
|-----|---------|------------------------|--------|--------|---------------|
| IC- | CP/MS   |                        |        |        |               |
| 1   | Cr(III) | 0.6, 0.8, 1.0, 4.0     | 2      | Cr(VI) | 0.2, 0.4, 1.0 |

#### **Ordering information**

Metrosep Carb 2 - 100/2.0 6.01090.210
Metrosep Carb 2 Guard/2.0 6.01090.600

## Metrosep Carb 2 - 150/2.0 (6.01090.220)

The Metrosep Carb 2 - 150/2.0 microbore column is particularly suitable for the determination of carbohydrates using alkaline eluents and pulsed amperometric detection. The anion exchanger column is based on a poly(styrene-co-divinylbenzene) copolymer. It is stable in the range of pH = 0-14 and separates monosaccharides and disaccharides. It is also suitable for the analysis of sugar alcohols, anhydrous sugars, oligosaccharides, etc. The column capacity has been optimized to enable the combination of rapid separations and excellent separation properties.

Thanks to its low eluent consumption, it is particularly suitable for IC-MS coupling.

#### Applications

- Monosaccharides
- Disaccharides
- Sugar alcohols
- Oligosaccharides
- Anhydrous sugars
- Rapid separations • IC-MS

#### **Technical information**

Substrate Poly(styrene-codivinylbenzene) with quaternary ammonium

groups

Column dimensions 150 x 2.0 mm

Column body PEEK 0.13 mL/min Standard flow 0.45 mL/min Maximum flow Maximum pressure 20 MPa Particle size 5.0 µm

Organic modifier In the eluent: 0-50 %

> acetonitrile or methanol In the sample: 0-100 % acetone, acetonitrile or

methanol

pH range 0-14 20-60 °C Temperature range

#### Eluents

| Hydroxide/acetate eluent (standard eluent) | Sodium hydroxide<br>(c = 20 mol/L) | 10 mL/2 L     | 100 mmol/L |
|--------------------------------------------|------------------------------------|---------------|------------|
|                                            | Sodium acetate                     | 1640.7 mg/2 L | 10 mmol/L  |
| Hydroxide/acetate eluent (modified)        | Sodium hydroxide<br>(c = 20 mol/L) | 0.5 mL/2 L    | 5 mmol/L   |
|                                            | Sodium acetate                     | 328.1 mg/2 L  | 2 mmol/L   |

#### Care

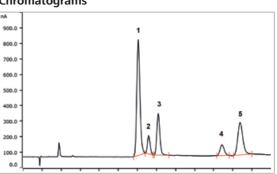
Regeneration

- 1. Use a flow ramp to establish the standard flow in the column within 5 min.
- 2. Rinse the column with the desired eluent for 2 h at 30 °C.

#### Organic contamination:

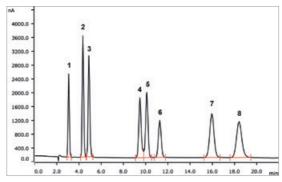

Rinse the column in the flow direction with 25 mL of solution (standard eluent in 50% acetonitrile) at a flow rate of 0.13 mL/min.

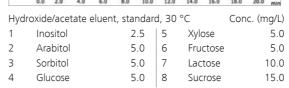
Inorganic contamination:

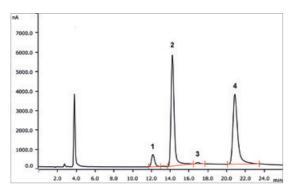

Rinse the column in the flow direction with a mixture of 100 mmol/L sodium hydroxide and 500 mmol/L sodium acetate at a flow rate of 0.13 mL/min for at least 7 h.

After regeneration, rinse the column with standard eluent for at least 7 h.

In the standard eluent





#### Chromatograms




Hydroxide/acetate eluent, (mod.), yoghurt,

| 1:1000 | 0 diluted, 40 °C |      |   |          | Conc. (g/L) |
|--------|------------------|------|---|----------|-------------|
| 1      | Sucrose          | 64.5 | 4 | Fructose | 15.2        |
| 2      | Galactose        | 4.2  | 5 | Lactose  | 30.6        |
| 3      | Glucose          | 10.0 |   |          |             |







| Ну  | droxide/acetate el          | luent, (mod.), | appl | le juice, |             |
|-----|-----------------------------|----------------|------|-----------|-------------|
| 1:1 | 1000 diluted, 40 $^{\circ}$ | C              |      |           | Conc. (g/L) |
| 1   | Sucrose                     | 5.0            | 3    | unknown   | -           |
| 2   | Glucose                     | 26.8           | 4    | Fructose  | 59.4        |

#### **Ordering information**

Metrosep Carb 2 - 150/2.0 6.01090.220 Metrosep Carb 2 Guard/2.0 6.01090.600

## Metrosep Carb 2 - 250/2.0 (6.01090.230)

The Metrosep Carb 2 - 250/2.0 column is particularly suitable for the determination of carbohydrates using alkaline eluents and pulsed amperometric detection. The high-capacity anion exchanger column is based on a poly(styrene-co-divinylbenzene) copolymer. It is stable in the range of pH = 0-14 and separates monosaccharides and disaccharides. It is also suitable for the analysis of sugar alcohols, anhydrous sugars, amino sugars, etc. The 250 mm microbore version of the Metrosep Carb 2 separation column is optimized for complex separations.

Thanks to its low eluent consumption, it is particularly suitable for IC-MS coupling.

#### Applications

- Monosaccharides
- Disaccharides
- Sugar alcohols
- Anhydrous sugars
- Oligosaccharides
- Difficult matrices
- Complex separations
- IC-MS

#### **Technical information**

Substrate Poly(styrene-co-

divinylbenzene) with quaternary ammonium

groups

PEEK

Column dimensions 250 x 2.0 mm

Column body

Standard flow 0.13 mL/min
Maximum flow 0.30 mL/min
Maximum pressure 20 MPa
Particle size 5.0 µm

Organic modifier In the eluent: 0–50 %

acetonitrile or methanol In the sample: 0–100 % acetone, acetonitrile or

methanol

pH range 0-14Temperature range 20-60 °C

#### Eluents

| Hydroxide/acetate eluent (standard eluent) | Sodium hydroxide $(c = 20 \text{ mol/L})$ | 10 mL/2 L     | 100 mmol/L |
|--------------------------------------------|-------------------------------------------|---------------|------------|
|                                            | Sodium acetate                            | 1640.7 mg/2 L | 10 mmol/L  |
| Hydroxid eluent                            | Sodium hydroxide                          | 1.0 mL/2 L    | 10 mmol/L  |

#### Care

Regeneration

Note:

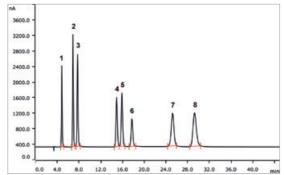
- 1. Use a flow ramp to establish the standard flow in the column within 5 min.
- 2. Rinse the column with the desired eluent for 2 h at 30  $^{\circ}$ C.

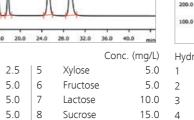
#### Organic contamination:

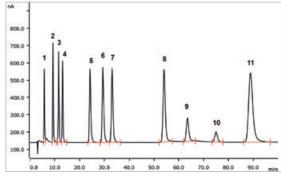
Rinse the column in the flow direction with 25 mL of solution (standard eluent in 50% acetonitrile) at a flow rate of 0.13 mL/min.

## Inorganic contamination:

Rinse the column in the flow direction with a mixture of 100 mmol/L sodium hydroxide and 500 mmol/L sodium acetate at a flow rate of 0.13 mL/min for at least 7 h.


After regeneration, rinse the column with standard eluent for at least 7 h.


#### Storage


In the standard eluent



## Chromatograms







| Hydroxide eluent, Anhydrosugars, 45 °C |              |      | Conc. | (mg/L)     |      |
|----------------------------------------|--------------|------|-------|------------|------|
| 1                                      | Inositol     | 0.25 | 7     | Galactosan | 1.25 |
| 2                                      | Arabitol     | 0.50 | 8     | Rhamnose   | 2.50 |
| 3                                      | Sorbitol     | 0.50 | 9     | Glucose    | 3.75 |
| 4                                      | Mannitol     | 0.50 | 10    | Xylose     | 3.75 |
| 5                                      | Levoglucosan | 1.25 | 11    | Sucrose    | 3.75 |
| 6                                      | Mannosan     | 1.25 |       |            |      |
|                                        |              |      |       |            |      |

#### **Ordering information**

Hydroxide/acetate, 30 °C

Inositol

Arabitol

Sorbitol

Glucose

| Metrosep Carb 2 - 250/2.0 | 6.01090.230 |
|---------------------------|-------------|
| Metrosep Carb 2 Guard/2.0 | 6.01090.600 |



# Separation columns



IC amino acid-separation column with optical detection (VIS) after post-column reaction

## Metrosep Amino Acids 1 - 100/4.0 (6.4001.410)

The Metrosep Amino Acids 1 - 100/4.0 is the standard separation column for amino acids. The column is based on a sulfonated poly(styrene-co-divinylbenzene) material. The determination of amino acids is accomplished by means of photometric detection following a post-column reaction with ninhydrin.

The Metrosep Amino Acids 1 - 100/4.0 permits the separation of up to 44 amino acids in research and routine applications, including all naturally occurring amino acids.

#### **Applications**

- Amino acids
- Ammonium

#### **Technical information**

Substrate Poly(styrene-co-

divinylbenzene) with sulfonic acid groups,

lithium form

Column dimensions 100 x 4.0 mm
Column body Stainless steel
Standard flow 0.4 mL/min
Maximum flow 0.5 mL/min

Maximum pressure 10 MPa Particle size 5 μm

Organic modifier 10% acetonitrile,

0-5% other organic

solvents

42.6 mmol/L

10.6 mmol/L pH = 2.8

42.6 mmol/L

10.6 mmol/L

1.0 mol/L

pH = 4.2

pH range 1–14 Temperature range 30–90 °C Capacity 2.9 mmol ( $K^+$ )

#### Eluents

Citrate/phenol eluent A: Gradient

Lithium citrate Phenol HCl

3: Lithium citrate
Lithium chloride
Phenol

Phenol HCl

# .

9

Column temperature 50 °C

#### **PCR** reagents

Ninhydrin

Ninhydrin Hydrindantin Dimethyl sulfoxide Lithium acetate buffer (2 mol/L, pH = 5.2 with acetic acid)

Hydrind

#### Care

## Regeneration

In the event of temporary loss of column performance:

• Apply fresh eluent, rinse the instrument and column for 1 h at 0.20 mL/min at 65 °C

#### For minor contaminations:

• 120 min 0.3 mol/L lithium hydroxide with 0.25 g/L EDTA (0.20 mL/min, 90 °C)

17.8 g/2 L

2.0 g/2L

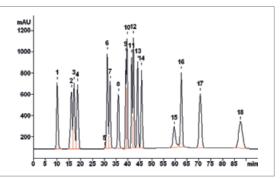
17.8 g/2L

86.0 g/2L

2.0 g/2L

4.0 g/200 mL 0.16 g/200 mL 0.11 mol/L 2.5 mmol/L 100 mL 100 mL

Reactor temperature 120 °C


With contaminations caused by organic components: Rinse the column with the following solutions in sequence (0.2 mL/min, 65  $^{\circ}$ C):

- 30 min ultrapure water
- 60 min 20% acetonitrile/water
- 60 min ultrapure water to completely remove the acetonitrile

#### Storage

Short-term: Storage in eluent with 2.5% acetonitrile Long-term: Storage in 0.3 mol/L lithium hydroxide with 5% acetonitrile.





| Citra | Citrate/phenol eluent, standard ( $\lambda = 570 \text{ nm}$ ) Conc. (mmol/L) |      |    |                 |     |  |
|-------|-------------------------------------------------------------------------------|------|----|-----------------|-----|--|
| 1     | L-aspartic acid                                                               | 2.5  | 10 | L-methionine    | 2.5 |  |
| 2     | L-serine                                                                      | 2.5  | 11 | L-isoleucine    | 2.5 |  |
| 3     | L-threonine                                                                   | 2.5  | 12 | L-leucine       | 2.5 |  |
| 4     | L-glutamic acid                                                               | 2.5  | 13 | L-tyrosine      | 2.5 |  |
| 5     | L-proline                                                                     | 2.5  | 14 | L-phenylalanine | 2.5 |  |
| 6     | Glycine                                                                       | 2.5  | 15 | Ammonium        | 2.5 |  |
| 7     | L-alanine                                                                     | 2.5  | 16 | L-lysine        | 2.5 |  |
| 8     | L-valine                                                                      | 2.5  | 17 | L-histidine     | 2.5 |  |
| 9     | L-cystine                                                                     | 1.25 | 18 | L-arginine      | 2.5 |  |
|       |                                                                               |      |    |                 |     |  |

| Ordering information             |            |
|----------------------------------|------------|
| Metrosep Amino Acids 1 - 100/4.0 | 6.4001.410 |
| Metrosep RP 2 Guard/3.5          | 6.1011.030 |
| Metrosep RP 3 Guard HC/4.0       | 6.1011.040 |



# Separation columns



IC cation-separation columns for analyses without chemical suppression

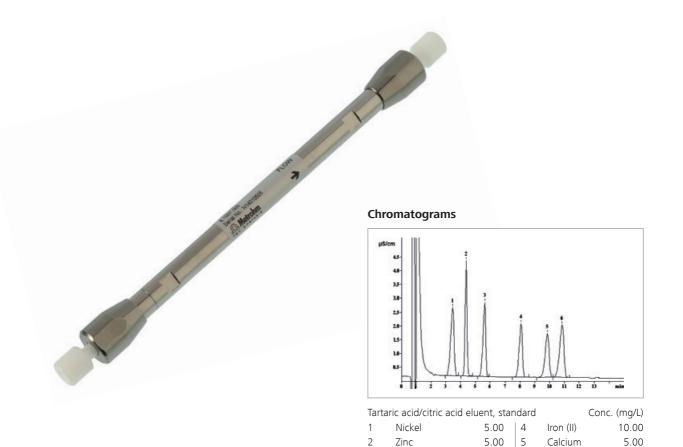
## Nucleosil 5SA - 125/4.0 (6.1007.000)

The Nucleosil 5SA - 125/4.0 cation column uses sulfonic acid groups for separating cations. With eluents containing organic acids and ethylenediamine, this column separates divalent cations such as magnesium and calcium as well as several transition metal elements (e.g. nickel, zinc, cobalt, manganese). The Nucleosil 5SA - 125/4.0 is therefore the inexpensive and robust separation column for the determination of transition metals by direct conductivity measurement without post-column reaction. In addition to high concentrations of alkaline metals, calcium, and magnesium can be determined reliably. The column is only suitable for divalent cations. Monovalent cations elute practically simultaneously with the injection peak.

## Applications

- $\bullet$  Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, Fe<sup>2+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup>, Cd<sup>2+</sup>, Zn<sup>2+</sup>, Mn<sup>2+</sup>
- Mg<sup>2+</sup>, Ca<sup>2+</sup> in addition to a high amount of sodium

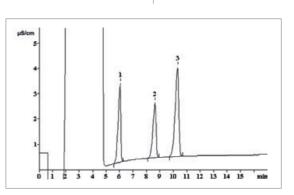
#### **Technical information**


Substrate Spherical silica gel with sulfonic acid groups 125 x 4.0 mm Column dimensions Stainless steel Column body Standard flow 1.5 mL/min 5.0 mL/min Maximum flow Maximum pressure 40 MPa Particle size 5 µm 2-8 pH range Temperature range 0-40°C Capacity 95 μmol (K<sup>+</sup>)

#### Eluents

| Tartaric acid/     | Tartaric acid   | 1200 mg/2 L | 4.0 mmol/L |
|--------------------|-----------------|-------------|------------|
| citric acid eluent | Citric acid     | 192 mg/2 L  | 0.5 mmol/L |
| (standard eluent)  | Ethylenediamine | 360 mg/2 L  | 3.0 mmol/L |
|                    | Acetone         | 100 mL/2 L  | 5%         |

#### Care


Injection of 100 µL Na<sub>2</sub>H<sub>2</sub>EDTA (0.1 mol/L) – do not use For short periods (days) in the eluent, for longer periods alkaline EDTA solutions – or rinse with 30 mL HNO<sub>3</sub> (weeks) in methanol/water (1:4). (0.1 mol/L) at a flow rate of 0.5 mL/min.



Cobalt







5.00 6

Magnesium

| Tart | Tartaric acid/citric acid eluent, |               |    |           |          |  |  |
|------|-----------------------------------|---------------|----|-----------|----------|--|--|
| «pro | oduced water» of a                | an oil platfo | rm | Conc      | . (mg/L) |  |  |
| 1    | Strontium                         | 33.8          | 3  | Magnesium | 29.0     |  |  |
| 2    | Barium                            | 53.9          |    |           |          |  |  |

## **Ordering information**

Nucleosil 5SA - 125/4.0 6.1007.000 6.1007.110 Nucleosil 5SA 2 Guard cartridge/4.0 Holder to Nucleosil 5SA 2 Guard Cartridge/4.0 6.2821.140 (holder for guard column cartridges 6.1007.110)

# Metrosep C 3 - 100/4.0 (6.1010.410)

The innovative substrate on a polyvinyl alcohol base increases selectivity for monovalent and divalent cations significantly. The peak forms on this cation column are highly symmetrical.

The shortest separation column of the Metrosep-C-3 • Matrices with high pH product range is particularly suitable for rapid separations of standard cations and for the separation of larger organic amines.

#### Applications

- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>, Mn<sup>2+</sup>, Co<sup>2+</sup>, Zn<sup>2+</sup>, Ni<sup>2+</sup>
- Larger organic amines
- Low detection limits

| Technical information |                           |
|-----------------------|---------------------------|
| Substrate             | Polyvinyl alcohol with    |
|                       | carboxyl groups           |
| Column dimensions     | 100 x 4.0 mm              |
| Column body           | PEEK                      |
| Standard flow         | 1.0 mL/min                |
| Maximum flow          | 1.5 mL/min                |
| Maximum pressure      | 15 MPa                    |
| Particle size         | 5 μm                      |
| Organic modifiers     | 0-50% acetonitrile,       |
|                       | 0-30% acetone,            |
|                       | no methanol               |
| pH range              | 2–12                      |
| Temperature range     | 20-40 °C                  |
| Capacity              | 12 μmol (K <sup>+</sup> ) |

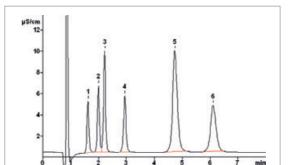
#### Eluents

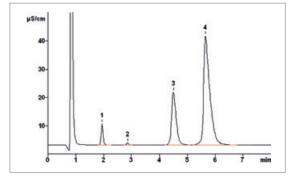
| Nitric acid eluent | Nitric acid ( $c = 1 \text{ mol/L}$ ) | 10 mL/2 L | 5 mmol/L |
|--------------------|---------------------------------------|-----------|----------|
| (standard eluent)  |                                       |           |          |

#### Care

Regeneration

Add 30% acetonitrile to the standard eluent.


Storage


For 1–3 days in the eluent; in ultrapure water for longer

Recommended temperature: 4–8 °C



#### Chromatograms





| Nit | ric acid eluent, stan | dard |   | Con       | c. (mg/L) | Ν |
|-----|-----------------------|------|---|-----------|-----------|---|
| 1   | Lithium               | 1.00 | 4 | Potassium | 10.00     | 1 |
| 2   | Sodium                | 5.00 | 5 | Magnesium | 10.00     | 2 |
| 3   | Ammonium              | 5.00 | 6 | Calcium   | 10.00     |   |

| ) | Nitri | c acid eluent, drir | nking water |   | Con       | c. (mg/L) |
|---|-------|---------------------|-------------|---|-----------|-----------|
| ) | 1     | Sodium              | 5.83        | 3 | Magnesium | 18.91     |
| ) | 2     | Potassium           | 1.45        | 4 | Calcium   | 87.51     |
|   |       |                     |             |   |           |           |

| Ordering information     |            |
|--------------------------|------------|
| Metrosep C 3 - 100/4.0   | 6.1010.410 |
| Metrosep C 3 Guard/4.0   | 6.1010.450 |
| Metrosep C 3 S-Guard/4.0 | 6.1010.460 |

# Metrosep C 3 - 150/4.0 (6.1010.420)

The innovative substrate on a polyvinyl alcohol base increases selectivity for monovalent and divalent cations significantly. The peak forms on this cation column are highly symmetrical.

The middle separation column of the Metrosep-C-3 • Matrices with high pH product range is particularly suitable for rapid separations of standard cations and certain transition metal cations as well as for the separation of mid-sized organic amines.

#### Applications

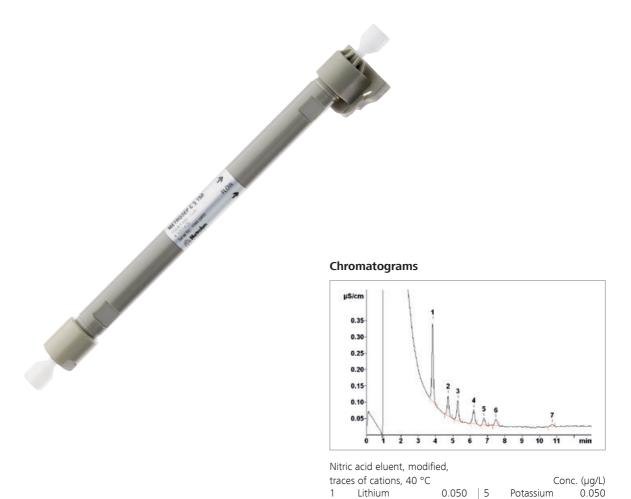
- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>, Mn<sup>2+</sup>, Co<sup>2+</sup>, Zn<sup>2+</sup>, Ni<sup>2+</sup>
- Organic amines
- Low detection limits

| <b>Technical information</b> |                           |
|------------------------------|---------------------------|
| Substrate                    | Polyvinyl alcohol with    |
|                              | carboxyl groups           |
| Column dimensions            | 150 x 4.0 mm              |
| Column body                  | PEEK                      |
| Standard flow                | 1.0 mL/min                |
| Maximum flow                 | 1.5 mL/min                |
| Maximum pressure             | 15 MPa                    |
| Particle size                | 5 μm                      |
| Organic modifiers            | 0-50% acetonitrile,       |
|                              | 0–30% acetone,            |
|                              | no methanol               |
| pH range                     | 2–12                      |
| Temperature range            | 20–40 °C                  |
| Capacity                     | 18 μmol (K <sup>+</sup> ) |

#### Eluents

| Nitric acid eluent | Nitric acid ( $c = 1 \text{ mol/L}$ ) | 10 mL/2 L | 5 mmol/L   |
|--------------------|---------------------------------------|-----------|------------|
| (standard eluent)  |                                       |           |            |
| Nitric acid eluent | Nitric acid ( $c = 1 \text{ mol/L}$ ) | 5 mL/2 L  | 2.5 mmol/L |
| (modified)         |                                       |           |            |

#### Care

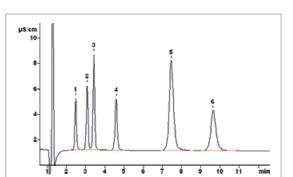

Regeneration

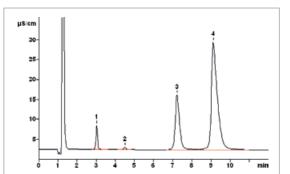
Add 30% acetonitrile to the standard eluent.

Storage

For 1–3 days in the eluent; in ultrapure water for longer

Recommended temperature: 4–8 °C





Lithium

Ammonium

Monoethylamine 0.100

2 Sodium





0.050

0.050 6 Diethylamine 0.100

Triethylamine 0.100

| Nitric acid eluent, standard Conc. (mg/L) |          |      |   |           |       |  |
|-------------------------------------------|----------|------|---|-----------|-------|--|
| 1                                         | Lithium  | 1.00 | 4 | Potassium | 10.00 |  |
| 2                                         | Sodium   | 5.00 | 5 | Magnesium | 10.00 |  |
| 3                                         | Ammonium | 5.00 | 6 | Calcium   | 10.00 |  |

| Nitri | c acid eluent, drir | nking water |   | Con       | c. (mg/L) |
|-------|---------------------|-------------|---|-----------|-----------|
| 1     | Sodium              | 5.86        | 3 | Magnesium | 18.90     |
| 2     | Potassium           | 1.41        | 1 | Calcium   | 87.48     |

| Ordering information     |            |
|--------------------------|------------|
| Metrosep C 3 - 150/4.0   | 6.1010.420 |
| Metrosep C 3 Guard/4.0   | 6.1010.450 |
| Metrosep C 3 S-Guard/4.0 | 6.1010.460 |

# Metrosep C 3 - 250/4.0 (6.1010.430)

The innovative substrate on a polyvinyl alcohol base increases selectivity for monovalent and divalent cations significantly. A characteristic of this is the number of «theoretical plates per meter». On the Metrosep C 3 - 250/4.0, for example, 42,000 plates are achieved for sodium, 51,000 for ammonium, and 31,000 for barium with its delayed elution. The peak forms on this cation column are highly symmetrical.

The selectivity of the Metrosep C 3 - 250/4.0 also permits the separation of transition metals. Because Metrohm ion chromatographs generally determine the cations without chemical suppression, the transition metals can be analyzed on the Metrosep C 3 - 250/4.0 together with the alkaline and earth alkaline metals.

#### Applications

- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>,
   Mn<sup>2+</sup>, Co<sup>2+</sup>, Zn<sup>2+</sup>, Ni<sup>2+</sup>
- Good Na<sup>+</sup>/NH<sub>4</sub><sup>+</sup> separation
- Low detection limits
- Matrices with high pH

Polyvinyl alcohol with Substrate carboxyl groups Column dimensions 250 x 4.0 mm Column body PEEK Standard flow 1.0 mL/min Maximum flow 1.5 mL/min Maximum pressure 15 MPa Particle size 5 µm Organic modifiers 0-50% acetonitrile, 0-30% acetone, no methanol pH range 2-12 Temperature range 20-40 °C

30 μmol (K<sup>+</sup>)

#### Eluents

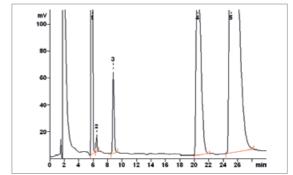
| Nitric acid eluent      | Nitric acid ( $c = 1 \text{ mol/L}$ ) | 10 mL/2 L  | 5 mmol/L   |
|-------------------------|---------------------------------------|------------|------------|
| (standard eluent)       |                                       |            |            |
| Nitric acid/crown ether | Nitric acid (c = 1 mol/L)             | 7 mL/2 L   | 3.5 mmol/L |
| eluent                  | Crown ether 18-crown-6                | 264 mg/2 L | 0.5 mmol/L |

Capacity

#### Care

Regeneration

Add 30% acetonitrile to the standard eluent.


Storage

For 1–3 days in the eluent; in ultrapure water for longer storage.

Recommended temperature: 4–8 °C







| Nitr | ic acid eluent, lak | e water, 40 ° | C | Cond      | c (mg/L) |  |
|------|---------------------|---------------|---|-----------|----------|--|
| 1    | Lithium             | n.q.          | 4 | Magnesium | 82.8     |  |
| 2    | Sodium              | 109.7         | 5 | Calcium   | 6.3      |  |
| 3    | Potaccium           | 86.7          |   |           |          |  |

| Nitric acid/crown ether eluent, standard |           |      |   | Conc. (µg/L) |       |  |
|------------------------------------------|-----------|------|---|--------------|-------|--|
| 1                                        | Sodium    | 2000 | 4 | Magnesium    | 2500  |  |
| 2                                        | Ammonium  | 2    | 5 | Calcium      | 15000 |  |
| 3                                        | Potassium | 500  |   |              |       |  |

| Ordering information     |            |
|--------------------------|------------|
| Metrosep C 3 - 250/4.0   | 6.1010.430 |
| Metrosep C 3 Guard/4.0   | 6.1010.450 |
| Metrosep C 3 S-Guard/4.0 | 6.1010.460 |

# Metrosep C 4 - 50/4.0 (6.1050.450)

The Metrosep C 4 - 50/4.0 is the shortest separation column in the Metrosep-C-4 product range. With a capacity of 5  $\mu$ mol (K\*), it is particularly suitable for very rapid separations. The low capacity makes it possible to quickly analyze the earth alkaline metals with their delayed elution. Thanks to the short retention times, applications that, in terms of analysis duration, were previously possible only with an FIA system (Flow Injection Analysis system) can now be transferred over to ion chromatography.

#### Applications

- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>
- Alkylamines
- Very rapid separations
- Simple sample matrices

| <b>Technical information</b> |                        |
|------------------------------|------------------------|
| Substrate                    | Silica gel with        |
|                              | carboxyl groups        |
| Column dimensions            | 50 x 4.0 mm            |
| Column body                  | PEEK                   |
| Standard flow                | 0.9 mL/min             |
| Maximum flow                 | 2.0 mL/min             |
| Maximum pressure             | 25 MPa                 |
| Particle size                | 5 μm                   |
| Organic modifier             | Eluent: 0-100% acetone |
|                              | and acetonitrile (no   |
|                              | alcohols)              |
|                              | Sample: 0-100%         |
|                              | acetone, acetonitrile, |
|                              | and alcohols           |
| pH range                     | 2–7                    |
| Temperature range            | 20–60 °C               |
| Capacity                     | 5 µmol (K+)            |

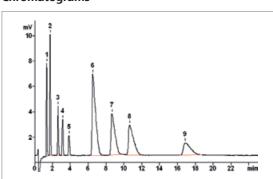
#### Eluents

| Nitric acid/            | Nitric acid ( $c = 1 \text{ mol/L}$ ) | 3.4 mL/2 L | 1.7 mmol/L |  |
|-------------------------|---------------------------------------|------------|------------|--|
| dipicolinic acid eluent | Dipicolinic acid                      | 234 mg/2 L | 0.7 mmol/L |  |
| (standard eluent)       |                                       |            |            |  |
| Nitric acid eluent      | Nitric acid (c = 1 mol/L)             | 4 mL/2 L   | 2.0 mmol/L |  |
| (modified)              |                                       |            |            |  |

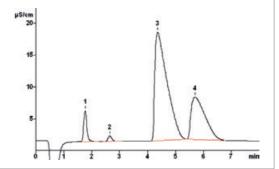
#### Care

#### Regeneration

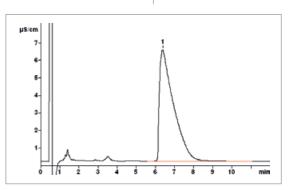
Organic contamination: Rinse the column in the opposite flow direction at a flow rate of 0.9 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60), and finally for 1 h with ultrapure water.


Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L  $HNO_3 + 4$  mmol/L dipicolinic acid for 1 h at a flow rate of 0.9 mL/min.

## Storage


In the eluent or in ultrapure water




#### Chromatograms



| Nitr | ic acid eluent, mo | dified, stand | ard | Con       | c. (mg/L) |
|------|--------------------|---------------|-----|-----------|-----------|
| 1    | Lithium            | 1.00          | 6   | Magnesium | 10.00     |
| 2    | Sodium             | 5.00          | 7   | Calcium   | 10.00     |
| 3    | Potassium          | 5.00          | 8   | Strontium | 20.00     |
| 4    | Rubidium           | 10.00         | 9   | Barium    | 20.00     |
| 5    | Cesium             | 10.00         |     |           |           |



| Nitr | ic acid/dipicolinic a | acid eluent, d | rinkir | ng water | Conc. (mg/L) |  |
|------|-----------------------|----------------|--------|----------|--------------|--|
| 1    | Sodium                | 3.89           | 3      | Calcium  | 82.82        |  |
| 2    | Potassium             | 1.13           | 4      | Magnesiu | ım 18.78     |  |



Conc. (mg/L)

Nitric acid eluent, modified, standard

1 Ethylenediamine 50.0

| Ordering information     |            |
|--------------------------|------------|
| Metrosep C 4 - 50/4.0    | 6.1050.450 |
| Metrosep C 4 Guard/4.0   | 6.1050.500 |
| Metrosep C 4 S-Guard/4.0 | 6.1050.510 |

# Metrosep C 4 - 100/4.0 (6.1050.410)

The 100 mm version of the Metrosep C 4 column is intended for rapid determinations of the standard cations. Very short retention times are achieved, however the elution times of sodium and ammonium still differ by 25 s. When a special eluent is used, the six cations lithium, ammonium, sodium, calcium, magnesium, and potassium can be determined in less than 5 minutes with the Metrosep C 4 - 100/4.0.

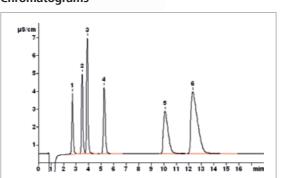
#### Applications

- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>
- Lipophilic amines with short retention times
- Rapid separations

| <b>Technical information</b> | 1                         |
|------------------------------|---------------------------|
| Substrate                    | Silica gel with           |
|                              | carboxyl groups           |
| Column dimensions            | 100 x 4.0 mm              |
| Column body                  | PEEK                      |
| Standard flow                | 0.9 mL/min                |
| Maximum flow                 | 2.0 mL/min                |
| Maximum pressure             | 25 MPa                    |
| Particle size                | 5 μm                      |
| Organic modifier             | Eluent: 0-100% acetone    |
|                              | and acetonitrile (no      |
|                              | alcohols)                 |
|                              | Sample: 0-100%            |
|                              | acetone, acetonitrile,    |
|                              | and alcohols              |
| pH range                     | 2–7                       |
| Temperature range            | 20–60 °C                  |
| Capacity                     | 10 μmol (K <sup>+</sup> ) |
|                              |                           |

#### **Eluents**

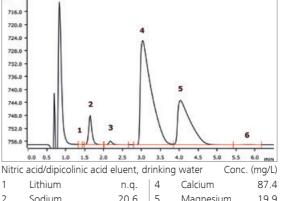
| Nitric acid/<br>dipicolinic acid eluent<br>(standard eluent) | Nitric acid (c = 1 mol/L)<br>Dipicolinic acid | 3.4 mL/2 L<br>234 mg/2 L | 1.7 mmol/L<br>0.7 mmol/L |
|--------------------------------------------------------------|-----------------------------------------------|--------------------------|--------------------------|
| Nitric acid/                                                 | Nitric acid ( $c = 1 \text{ mol/L}$ )         | 3.4 mL/2 L               | 1.7 mmol/L               |
| dipicolinic acid/acetone                                     | Dipicolinic acid                              | 234 mg/2 L               | 0.7 mmol/L               |
| eluent                                                       | Acetone                                       | 100 mL/2 L               | 5%                       |
| Nitric acid/                                                 | Nitric acid (c = 1 mol/L)                     | 4.0 mL/2 L               | 2.0 mmol/L               |
| dipicolinic acid eluent (modified)                           | Dipicolinic acid                              | 401 mg/2 L               | 1.2 mmol/L               |

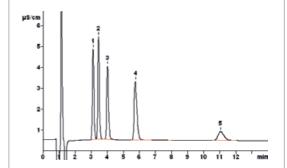

#### Regeneration

Organic contamination: Rinse the column in the opposite dipicolinic acid for 1 h at a flow rate of 0.9 mL/min. flow direction at a flow rate of 0.9 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water Storage (40/60), and finally for 1 h with ultrapure water.

Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L HNO<sub>3</sub> + 4 mmol/L

In the eluent or in ultrapure water






| Nitric acid/dipicolinic acid eluent, standard Conc. (mg/L) |          |      |   |           |       |
|------------------------------------------------------------|----------|------|---|-----------|-------|
| 1                                                          | Lithium  | 1.00 | 4 | Potassium | 10.00 |
| 2                                                          | Sodium   | 5.00 | 5 | Calcium   | 10.00 |
| 3                                                          | Ammonium | 5.00 | 6 | Magnesium | 10.00 |







| 756.0  | 1       |         | 111/   | 1      | -     | -      | -      | 4    | _     | _     | -    |      | -    |
|--------|---------|---------|--------|--------|-------|--------|--------|------|-------|-------|------|------|------|
|        | 0.0 0.5 | 1.0     | 1.5    | 2.0    | 2.5   | 3.0    | 3.5    | 4.0  | 4.5   | 5.0   | 5.5  | 6.0  | min  |
| Nitric | acid/d  | dipicol | inic a | acid ( | eluer | nt, di | rinkir | ng w | ater  | (     | Conc | . (m | ıg/l |
| 1      | Lithiu  | um      |        |        | n.    | q.     | 4      | C    | alciu | m     |      | 8    | 37.  |
| 2      | Sodi    | um      |        |        | 20    | .6     | 5      | N    | 1agn  | esiur | n    | 1    | 19.  |
| 3      | Pota    | ssium   |        |        | 1.    | .7     | 6      | St   | tront | ium   |      |      | n.c  |
|        |         |         |        |        |       |        | I      |      |       |       |      |      |      |

| Nitr | Nitric acid/dipicolinic acid/acetone eluent, |      |   |              |            |  |
|------|----------------------------------------------|------|---|--------------|------------|--|
| star | ndard                                        |      |   | Cor          | nc. (mg/L) |  |
| 1    | Sodium                                       | 5.00 | 4 | Guanidine    | 15.00      |  |
| 2    | Ammonium                                     | 5.00 | 5 | Aminoguanidi | ne 15.00   |  |
| 3    | Methylamine                                  | 5.00 |   |              |            |  |

| Ordering in | nformation |
|-------------|------------|
|-------------|------------|

| Metrosep C 4 - 100/4.0        | 6.1050.410 |
|-------------------------------|------------|
| Metrosep C 4 Guard/4.0        | 6.1050.500 |
| Metrosep C 4 S-Guard/4.0      | 6.1050.510 |
| Metrosep C 4 S-Guard - 50/4.0 | 6.1050.530 |

# Metrosep C 4 - 150/4.0 (6.1050.420)

The Metrosep C 4 - 150/4.0 is the universal standard column in cation analysis for accomplishing high separating efficiency in a short time. The Metrosep C 4 - 150/4.0 is the ideal separation column for the analysis of alkaline and earth alkaline metals in aqueous media.

#### Applications

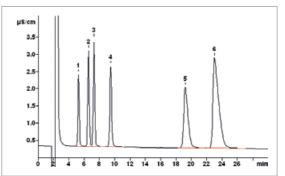
- Standard column
- Amines
- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>
- Universal applications
- Different matrices

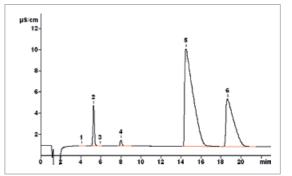
| <b>Technical information</b> |                           |
|------------------------------|---------------------------|
| Substrate                    | Silica gel with           |
|                              | carboxyl groups           |
| Column dimensions            | 150 x 4.0 mm              |
| Column body                  | PEEK                      |
| Standard flow                | 0.9 mL/min                |
| Maximum flow                 | 2.0 mL/min                |
| Maximum pressure             | 25 MPa                    |
| Particle size                | 5 μm                      |
| Organic modifier             | Eluent: 0-100% acetone    |
|                              | and acetonitrile (no      |
|                              | alcohols)                 |
|                              | Sample: 0-100%            |
|                              | acetone, acetonitrile,    |
|                              | and alcohols              |
| pH range                     | 2–7                       |
| Temperature range            | 20–60 °C                  |
| Capacity                     | 15 μmol (K <sup>+</sup> ) |

#### Eluents

| Nitric acid/                      | Nitric acid ( $c = 1 \text{ mol/L}$ )      | 3.4 mL/2 L               | 1.7 mmol/L               |
|-----------------------------------|--------------------------------------------|--------------------------|--------------------------|
| dipicolinic acid eluent           | Dipicolinic acid                           | 234 mg/2 L               | 0.7 mmol/L               |
| (standard eluent)                 |                                            |                          |                          |
|                                   |                                            |                          |                          |
| Nitric acid/                      | Nitric acid ( $c = 1 \text{ mol/L}$ )      | 3.4 mL/2 L               | 1.7 mmol/L               |
| Nitric acid/<br>dipicolinic acid/ | Nitric acid (c = 1 mol/L) Dipicolinic acid | 3.4 mL/2 L<br>234 mg/2 L | 1.7 mmol/L<br>0.7 mmol/L |

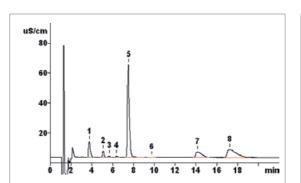
#### Care

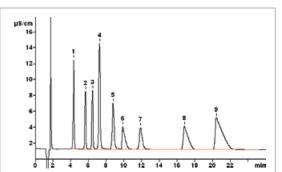

Organic contamination: Rinse the column in the opposite dipicolinic acid for 1 h at a flow rate of 0.9 mL/min. flow direction at a flow rate of 0.9 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water Storage (40/60), and finally for 1 h with ultrapure water.


Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L HNO<sub>3</sub> + 4 mmol/L

In the eluent or in ultrapure water




#### Chromatograms






| Nitr | ric acid/dipicolinic ac | id eluent, s | tanda | rd Con    | c. (mg/L) |
|------|-------------------------|--------------|-------|-----------|-----------|
| 1    | Lithium                 | 1.00         | 4     | Potassium | 10.00     |
| 2    | Sodium                  | 5.00         | 5     | Calcium   | 10.00     |
| 3    | Ammonium                | 5.00         | 6     | Magnesium | 10.00     |







| Nitric acid/dipicolinic acid eluent, wine |         |   |   | Conc.     | (mg/L) |
|-------------------------------------------|---------|---|---|-----------|--------|
| 1                                         | unknown | - | 5 | Potassium | 1100   |
| 2                                         | unknown | - | 6 | Histamine | 110.8  |
| 3                                         | unknown | - | 7 | unknown   | _      |
| 4                                         | unknown | - | 8 | Magnesium | n.q.   |

| Nitric | acid/dipicolinic acid/d | crown et | ther elu | uent,           |       |
|--------|-------------------------|----------|----------|-----------------|-------|
| stand  | ard                     |          |          | Conc. (         | mg/L) |
| 1      | Lithium                 | 2,.00    | 6        | Potassium       | 10.0  |
| 2      | Sodium                  | 5.00     | 7        | Triethanolamine | 30.0  |
| 3      | Ammonium                | 5.00     | 8        | Calcium         | 10.0  |
| 4      | Monoethanolamine        | 30.0     | 9        | Magnesium       | 10.0  |
| 5      | Diethanolamine          | 30.0     |          |                 |       |
|        |                         |          |          |                 |       |

| Ordering information          |            |
|-------------------------------|------------|
| Metrosep C 4 - 150/4.0        | 6.1050.420 |
| Metrosep C 4 Guard/4.0        | 6.1050.500 |
| Metrosep C 4 S-Guard/4.0      | 6.1050.510 |
| Metrosep C 4 S-Guard - 50/4.0 | 6.1050.530 |

# Metrosep C 4 - 250/4.0 (6.1050.430)

The Metrosep C 4 - 250/4.0 is the cation column with the greatest capacity in the C 4 series. It is predestined for applications which require the highest separating efficiency. Samples with extreme differences in concentrations can be analyzed reliably with this column. The performance capability of the column is demonstrated, for example, when analyzing boiler feed water for which the requirement is the perfect quantification of 7  $\mu$ g/L sodium in addition to 7  $\mu$ g/L monoethanolamine (MEA). With the Metrosep C 4 - 250/4.0, not only amines and transition metals but also alkaline and alkaline earth metals can be determined in a single run.

#### Applications

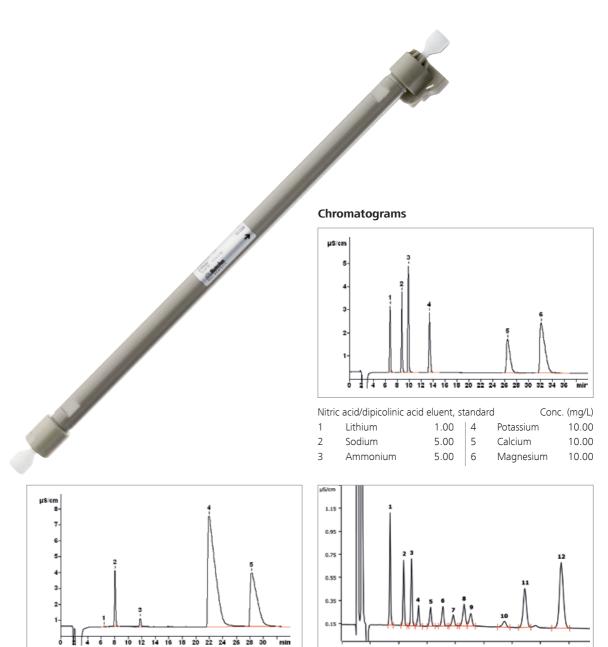
- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>,
   Co<sup>2+</sup>, Ni<sup>2+</sup>, Zn<sup>2+</sup>, Cd<sup>2+</sup>, Pb<sup>2+</sup>, amines
- Very good Na<sup>+</sup>/NH<sub>4</sub><sup>+</sup> separation
- NH<sub>4</sub><sup>+</sup>, (CH<sub>3</sub>)NH<sub>3</sub><sup>+</sup>, (CH<sub>3</sub>)<sub>2</sub>NH<sub>2</sub><sup>+</sup>, (CH<sub>3</sub>)<sub>3</sub>NH<sup>+</sup>, (CH<sub>3</sub>)<sub>4</sub>N<sup>+</sup>, and the respective ethanolamines
- Difficult separation problems
- Great differences in concentration
- Transition metals

| Technical information |                           |
|-----------------------|---------------------------|
| Substrate             | Silica gel with           |
|                       | carboxyl groups           |
| Column dimensions     | 250 x 4.0 mm              |
| Column body           | PEEK                      |
| Standard flow         | 0.9 mL/min                |
| Maximum flow          | 2.0 mL/min                |
| Maximum pressure      | 25 MPa                    |
| Particle size         | 5 μm                      |
| Organic modifier      | Eluent: 0–100% acetone    |
|                       | and acetonitrile (no      |
|                       | alcohols)                 |
|                       | Sample: 0–100%            |
|                       | acetone, acetonitrile,    |
|                       | and alcohols              |
| pH range              | 2–7                       |
| Temperature range     | 20-60 °C                  |
| Capacity              | 25 μmol (K <sup>+</sup> ) |

#### Eluents

| Nitric acid/<br>dipicolinic acid eluent<br>(standard eluent) | Nitric acid (c = 1 mol/L)<br>Dipicolinic acid | 3.4 mL/2 L<br>234 mg/2 L | 1.7 mmol/L<br>0.7 mmol/L |
|--------------------------------------------------------------|-----------------------------------------------|--------------------------|--------------------------|
| Amine eluent                                                 | Nitric acid ( $c = 1 \text{ mol/L}$ )         | 3.4 mL/2 L               | 1.7 mmol/L               |
|                                                              | Dipicolinic acid                              | 234 mg/2 L               | 0.7 mmol/L               |
|                                                              | 18-crown-6                                    | 26.4 mg/2 L              | 0.05 mmol/L              |
|                                                              | Acetone                                       | 25 mL/2 L                | 2.5%                     |

#### Care


Regeneration

Organic contamination: Rinse the column in the opposite flow direction at a flow rate of 0.9 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60), and finally for 1 h with ultrapure water.

Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L  $HNO_3 + 4$  mmol/L dipicolinic acid for 1 h at a flow rate of 0.9 mL/min.

#### Storage

In the eluent or in ultrapure water



| min    |
|--------|
| (mg/L) |
|        |
| 4.0    |
|        |
| 4.0    |
| 4.0    |
| 2.0    |
| 2.0    |
| 9      |

| Ordering information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Metrosep C 4 - 250/4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.1050.430  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| Metrosep C 4 Guard/4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.1050.500  |
| and the second s |             |
| Metrosep C 4 S-Guard/4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.1050.510  |
| The state of the s |             |
| Metrosep C 4 S-Guard - 50/4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.1050.530  |
| e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.1.030.030 |

# Metrosep C 6 - 100/4.0 (6.1051.410)

The 100 mm version of the Metrosep C 6 column is designed to determine standard cations, e.g., in drinking water. Excellent separation of sodium and ammonium is still achieved, despite the very short retention times. The high capacity of the Metrosep C 6 material permits larger sample volumes.

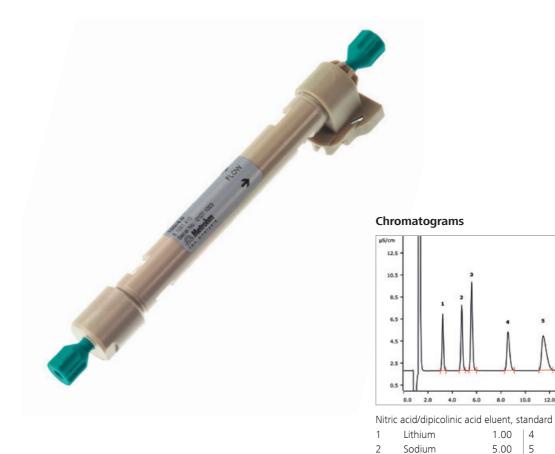
#### Applications

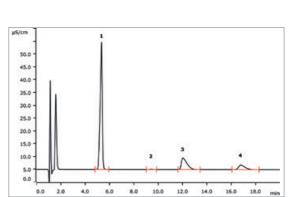
- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>
- Lipophilic amines with short retention times
- Rapid separations

| Technical information |                           |
|-----------------------|---------------------------|
| Substrate             | Silica gel with           |
|                       | carboxyl groups           |
| Column dimensions     | 100 x 4.0 mm              |
| Column body           | PEEK                      |
| Standard flow         | 0.9 mL/min                |
| Maximum flow          | 3.5 mL/min                |
| Maximum pressure      | 20 MPa                    |
| Particle size         | 5 μm                      |
| Organic modifier      | Eluent: 0-100% acetone    |
|                       | and acetonitrile (no      |
|                       | alcohols)                 |
|                       | Sample: 0-100%            |
|                       | acetone, acetonitrile,    |
|                       | and alcohols              |
| pH range              | 2–7                       |
| Temperature range     | 20–60 °C                  |
| Standard temperature  | 20–30 °C                  |
| Capacity              | 20 μmol (K <sup>+</sup> ) |

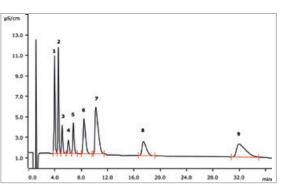
#### **Eluents**

| Nitric acid/<br>dipicolinic acid eluent<br>(standard eluent) | Nitric acid (c = 1 mol/L)<br>Dipicolinic acid | 3.4 mL/2 L<br>568 mg/2 L | 1.7 mmol/L<br>1.7 mmol/L |
|--------------------------------------------------------------|-----------------------------------------------|--------------------------|--------------------------|
| Oxalic acid/                                                 | Oxalic acid                                   | 360 mg/2 L               | 2.0 mmol/L               |
| dipicolinic acid/                                            | Dipicolinic acid                              | 668 mg/2 L               | 2.0 mmol/L               |
| acetonitril eluent                                           | Acetonitril                                   | 40 mL/2 L                | 2%                       |


#### Care


Regeneration

The column must be rinsed with ultrapure water before dipicolinic acid for 1 h at a flow rate of 0.9 mL/min. and after the regeneration.


Organic contamination: Rinse the column in the opposite Standard eluent at 10–22 °C flow direction at a flow rate of 0.9 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60).

Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L HNO<sub>3</sub> + 4 mmol/L









5.00 5

Ammonium

1.00 | 4 Potassium

5.00 6 Magnesium

Conc. (mg/L)

6.1051.410

6.1051.500

6.1051.510

10.00

10.00

10.00

| Oxalic acid/dipicoliffic acid/acetoriffili elderit, stafidard |                  |    |   |           |        |
|---------------------------------------------------------------|------------------|----|---|-----------|--------|
|                                                               |                  |    |   | Conc.     | (mg/L) |
| 1                                                             | Sodium           | 20 | 6 | Calcium   | 20     |
| 2                                                             | Ammonium         | 20 | 7 | Magnesium | 20     |
| 3                                                             | Monoethanolamine | 20 | 8 | Strontium | 20     |
| 4                                                             | Potassium        | 20 | 9 | Barium    | 40     |
| 5                                                             | Diethanolamine   | 20 |   |           |        |

#### Ordering information

Metrosep C 6 - 100/4.0 Metrosep C 6 Guard/4.0 Metrosep C 6 S-Guard/4.0

## Metrosep C 6 - 150/4.0 (6.1051.420)

The high-capacity Metrosep C 6 material makes the Metrosep C 6 - 150/4.0 separation column the optimum solution for the separation of standard cations with high differences in concentration in conjunction with reasonable retention times. Drinking water with low ammonium contents can be determined with this column.

#### Applications

- Standard column
- Amines
- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>
- Universal applications
- Different matrices
- Transition metals

| Technical       | information          |
|-----------------|----------------------|
| I CCI II II Cai | IIII OI III a ti OII |

Substrate Silica gel with

carboxyl groups

150 x 4.0 mm Column dimensions Column body PFFK

Standard flow 0.9 mL/min Maximum flow 2.5 mL/min

Maximum pressure 20 MPa Particle size 5 µm

Organic modifier Eluent: 0-100% acetone

and acetonitrile (no

alcohols) Sample: 0-100%

acetone, acetonitrile,

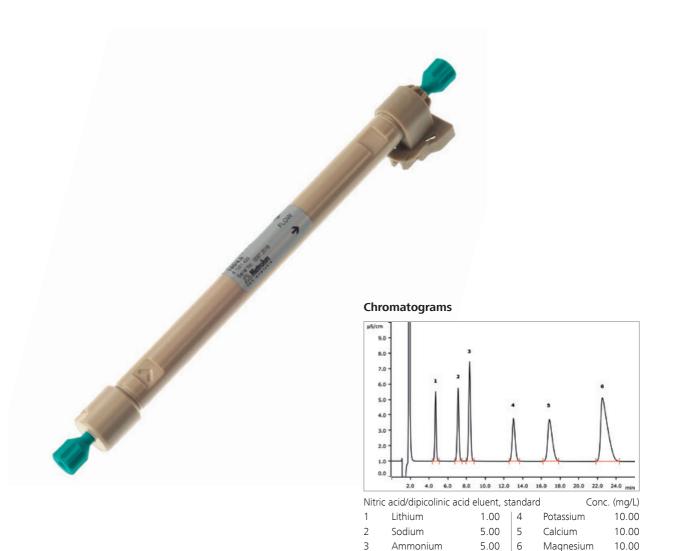
and alcohols

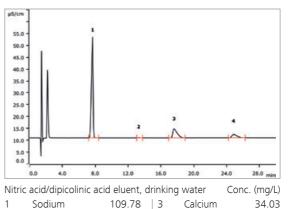
2-7 pH range

Temperature range 20-60 °C Standard temperature 20-30 °C

30 μmol (K<sup>+</sup>) Capacity

Eluents

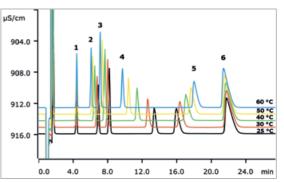

3.4 mL/2 L Nitric acid/ Nitric acid (c = 1 mol/L) 1.7 mmol/L 1.7 mmol/L dipicolinic acid eluent Dipicolinic acid 568 mg/2 L (standard eluent)


#### Care

The column must be rinsed with ultrapure water before and after the regeneration.

Organic contamination: Rinse the column in the opposite Standard eluent at 10–22 °C flow direction at a flow rate of 0.9 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60)

Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L HNO<sub>3</sub> + 4 mmol/L dipicolinic acid for 1 h at a flow rate of 0.9 mL/min.






0.65 4

Potassium

Magnesium



| Nitric acid/dipicolinic acid eluent Conc. (mg/L) |                   |      |   | c. (mg/L) |       |
|--------------------------------------------------|-------------------|------|---|-----------|-------|
| Temp                                             | erature dependenc | у    |   |           |       |
| 1                                                | Lithium           | 1.00 | 4 | Potassium | 10.00 |
| 2                                                | Sodium            | 5.00 | 5 | Calcium   | 10.00 |
| 3                                                | Ammonium          | 5.00 | 6 | Magnesium | 10.00 |

| Ordering information     |            |
|--------------------------|------------|
| Metrosep C 6 - 150/4.0   | 6.1051.420 |
| Metrosep C 6 Guard/4.0   | 6.1051.500 |
| Metrosep C 6 S-Guard/4.0 | 6.1051.510 |

# Metrosep C 6 - 250/4.0 (6.1051.430)

The Metrosep C 6 - 250/4.0 is the cation column with the greatest capacity in the Metrosep C 6 series. It is predestined for applications which require the highest separating efficiency. Samples with extreme differences in concentrations can be analyzed reliably with this column. The separation of sodium and ammonium is particularly outstanding here.

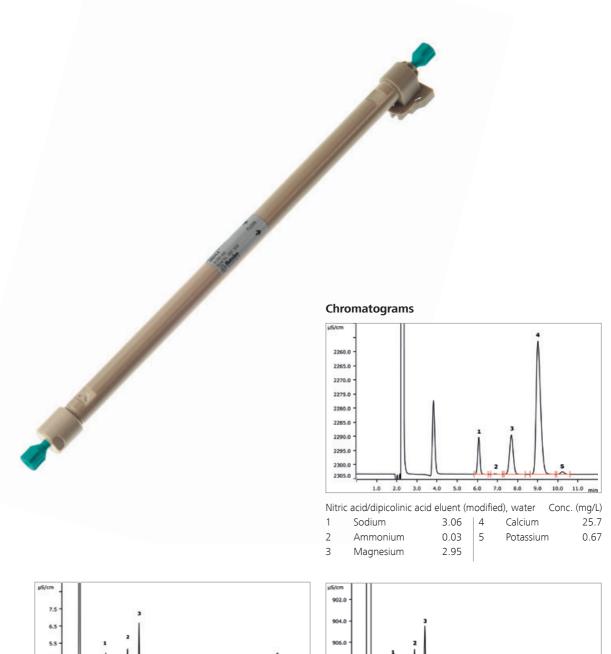
## Applications

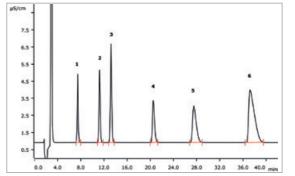
- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup>, Zn<sup>2+</sup>, Cd<sup>2+</sup>, Pb<sup>2+</sup>, amines
- Excellent Na<sup>+</sup>/NH<sub>4</sub><sup>+</sup> separation
- NH<sub>4</sub><sup>+</sup>, (CH<sub>3</sub>)NH<sub>3</sub><sup>+</sup>, (CH<sub>3</sub>)<sub>2</sub>NH<sub>2</sub><sup>+</sup>, (CH<sub>3</sub>)<sub>3</sub>NH<sup>+</sup>, (CH<sub>3</sub>)<sub>4</sub>N<sup>+</sup>, and the respective ethanolamines
- Difficult separation problems
- Great differences in concentration
- Transition metals

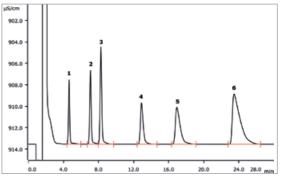
| Technical information |                           |  |
|-----------------------|---------------------------|--|
| Substrate             | Silica gel with           |  |
|                       | carboxyl groups           |  |
| Column dimensions     | 250 x 4.0 mm              |  |
| Column body           | PEEK                      |  |
| Standard flow         | 0.9 mL/min                |  |
| Maximum flow          | 1.5 mL/min                |  |
| Maximum pressure      | 20 MPa                    |  |
| Particle size         | 5 μm                      |  |
| Organic modifier      | Eluent: 0-100% acetone    |  |
|                       | and acetonitrile (no      |  |
|                       | alcohols)                 |  |
|                       | Sample: 0-100%            |  |
|                       | acetone, acetonitrile,    |  |
|                       | and alcohols              |  |
| pH range              | 2-7                       |  |
| Temperature range     | 20–60 °C                  |  |
| Standard temperature  | 20–30 °C                  |  |
| Capacity              | 50 μmol (K <sup>+</sup> ) |  |
|                       |                           |  |

| FI | uents |
|----|-------|
|    |       |

| Nitric acid/            | Nitric acid ( $c = 1 \text{ mol/L}$ ) | 3.4 mL/2 L    | 1.7 mmol/L     |  |
|-------------------------|---------------------------------------|---------------|----------------|--|
| dipicolinic acid eluent | Dipicolinic acid                      | 568 mg/2 L    | 1.7 mmol/L     |  |
| (standard eluent)       |                                       |               |                |  |
| Nitric acid/            | Nitric acid ( $c = 1 \text{ mol/L}$ ) | 16 mL/2 L     | 8.0 mmol/L     |  |
| dipicolinic acid eluent | Dipicolinic acid                      | 434 mg/2 L    | 1.3 mmol/L     |  |
| •                       | Dipiconine acia                       | 13 1 1119/2 2 | 113 1111110112 |  |

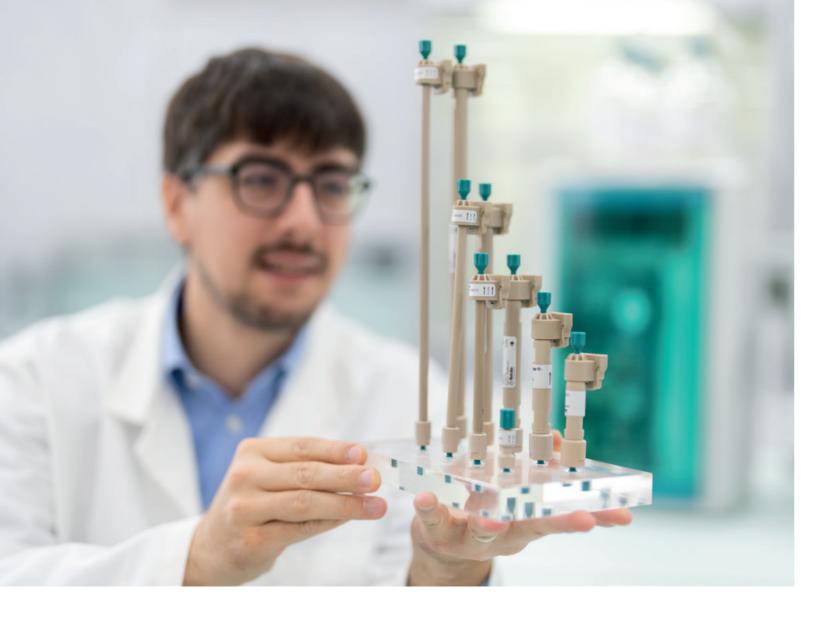

#### Care


and after the regeneration.


Organic contamination: Rinse the column in the opposite Storage flow direction at a flow rate of 0.9 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60).

Inorganic contamination: Rinse the column in the oppo-The column must be rinsed with ultrapure water before site flow direction with 10 mmol/L HNO3 + 4 mmol/L dipicolinic acid for 1 h at a flow rate of 0.9 mL/min.

Standard eluent at 10-22 °C








| Nitri | c acid/dipicolinic a | acid eluent, st | andard | l Co      | nc. (mg/L) | Nitr | ric acid/dipicolinic a | acid eluent, m | ethar | nol       | Conc. (mg/L) |
|-------|----------------------|-----------------|--------|-----------|------------|------|------------------------|----------------|-------|-----------|--------------|
| 1     | Lithium              | 1.00            | 4      | Potassium | 10.00      | 1    | Lithium                | 1.00           | 4     | Potassium | 10.00        |
| 2     | Sodium               | 5.00            | 5      | Calcium   | 10.00      | 2    | Sodium                 | 5.00           | 5     | Calcium   | 10.00        |
| 3     | Ammonium             | 5.00            | 6      | Magnesium | 10.00      | 3    | Ammonium               | 5.00           | 6     | Magnesiu  | m 10.00      |

| Ordering information     |            |
|--------------------------|------------|
| Metrosep C 6 - 250/4.0   | 6.1051.430 |
| Metrosep C 6 Guard/4.0   | 6.1051.500 |
| Metrosep C 6 S-Guard/4.0 | 6.1051.510 |



# Separation columns



Microbore IC cation-separation columns for lower eluent consumption and greater sensitivity

# Metrosep C 4 - 100/2.0 (6.1050.210)

The short version of the Metrosep C 4 column with 2 mm inner diameter is intended for rapid determinations of the standard cations. Very short retention times are achieved, however the elution times of sodium and ammonium still differ by 25 s. When a special eluent is • Fast analysis used, the six cations lithium, ammonium, sodium, calcium, magnesium, and potassium can be determined in less than 5 minutes with the Metrosep C 4 - 100/2.0. With its low eluent flow, this column is particularly suitable for IC-MS coupling.

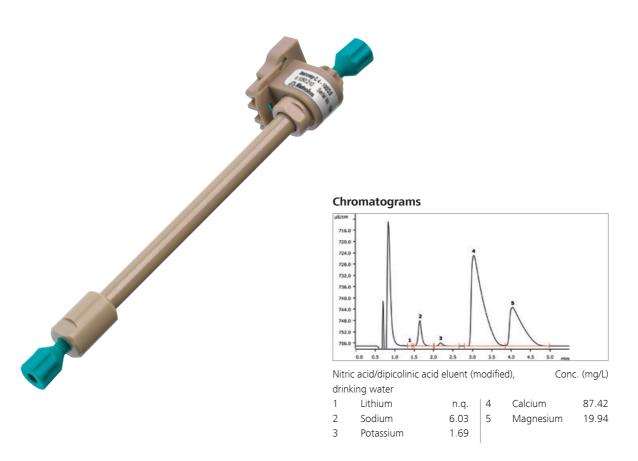
#### Applications

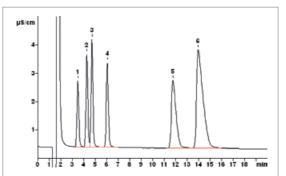
- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>
- Lipophilic amines with short retention times
- High flow rate fast separations

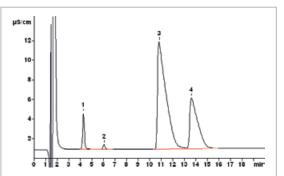
| Technical information |                          |
|-----------------------|--------------------------|
| Substrate             | Silica gel with          |
|                       | carboxyl groups          |
| Column dimensions     | 100 x 2.0 mm             |
| Column body           | PEEK                     |
| Standard flow         | 0.2 mL/min               |
| Maximum flow          | 1.6 mL/min               |
| Maximum pressure      | 25 MPa                   |
| Particle size         | 5 μm                     |
| Organic modifier      | Eluent: 0-100% acetone   |
|                       | and acetonitrile (no     |
|                       | alcohols)                |
|                       | Sample: 0-100%           |
|                       | acetone, acetonitrile,   |
|                       | and alcohols             |
| pH range              | 2-7                      |
| Temperature range     | 20–60 °C                 |
| Capacity              | 3 μmol (K <sup>+</sup> ) |

## Eluents

| Nitric acid/<br>dipicolinic acid eluent<br>(standard eluent) | Nitric acid (c = 1 mol/L)<br>Dipicolinic acid | 3.4 mL/2 L<br>234 mg/2 L | 1.7 mmol/L<br>0.7 mmol/L |
|--------------------------------------------------------------|-----------------------------------------------|--------------------------|--------------------------|
| Nitric acid/                                                 | Nitric acid (c = 1 mol/L)                     | 4.0 mL/2 L               | 2.0 mmol/L               |
| dipicolinic acid eluent<br>(modified)                        | Dipicolinic acid                              | 401 mg/2 L               | 1.2 mmol/L               |


#### Care


#### Regeneration


Organic contamination: Rinse the column in the opposite flow direction at a flow rate of 0.2 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60), and finally for 1 h with ultrapure water.

Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L HNO<sub>2</sub> + 4 mmol/L dipicolinic acid for 1 h at a flow rate of 0.2 mL/min.

In the eluent or in ultrapure water







| Nitr | ic acid/dipicolinic a | acid eluent, s | stanc | lard Cor  | nc. (mg/L) |
|------|-----------------------|----------------|-------|-----------|------------|
| 1    | Lithium               | 1.00           | 4     | Potassium | 10.00      |
| 2    | Sodium                | 5.00           | 5     | Calcium   | 10.00      |
| 3    | Ammonium              | 5.00           | 6     | Magnesium | 10.00      |

| Nitr | ic acid/dipicolinic a | acid eluent, di | rinkir | ng water | Conc. (mg/L) |
|------|-----------------------|-----------------|--------|----------|--------------|
| 1    | Sodium                | 3.89            | 3      | Calcium  | 82.82        |
| 2    | Potassium             | 1.13            | 4      | Magnesi  | um 18.78     |

| Ordering information     |            |
|--------------------------|------------|
| Metrosep C 4 - 100/2.0   | 6.1050.210 |
| Metrosep C 4 Guard/2.0   | 6.1050.600 |
| Metrosep C 4 S-Guard/2.0 | 6.1050.610 |

# Metrosep C 4 - 150/2.0 (6.1050.220)

The Metrosep C 4 - 150/2.0 is the universal standard column in cation analysis using microbore separation columns. It can achieve a high separating efficiency in a brief determination time. The Metrosep C 4 - 150/2.0 is the ideal separation column for the analysis of alkaline and earth alkaline metals in aqueous media. With its low eluent flow, this column is particularly suitable for IC-MS coupling.

#### Applications

- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>
- Transition metals

| Technical information |                        |
|-----------------------|------------------------|
| Substrate             | Silica gel with        |
|                       | carboxyl groups        |
| Column dimensions     | 150 x 2.0 mm           |
| Column body           | PEEK                   |
| Standard flow         | 0.2 mL/min             |
| Maximum flow          | 1.1 mL/min             |
| Maximum pressure      | 25 MPa                 |
| Particle size         | 5 μm                   |
| Organic modifier      | Eluent: 0-100% acetone |
|                       | and acetonitrile (no   |
|                       | alcohols)              |
|                       | Sample: 0-100%         |
|                       | acetone, acetonitrile, |
|                       | and alcohols           |
| pH range              | 2–7                    |
| Temperature range     | 20-60 °C               |

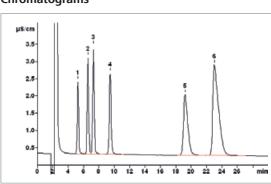
4 μmol (K<sup>+</sup>)

#### Eluents

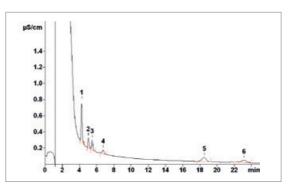
| Nitric acid/<br>dipicolinic acid eluent<br>(standard eluent) | Nitric acid (c = 1 mol/L)<br>Dipicolinic acid | 3.4 mL/2 L<br>234 mg/2 L | 1.7 mmol/L<br>0.7 mmol/L |
|--------------------------------------------------------------|-----------------------------------------------|--------------------------|--------------------------|
| Nitric acid/                                                 | Nitric acid (c = 1 mol/L)                     | 4.0 mL/2 L               | 2.0 mmol/L               |
| dipicolinic acid eluent (modified)                           | Dipicolinic acid                              | 43.6 mg/2 L              | 0.13 mmol/L              |
| Nitric acid eluent                                           | Nitric acid (c = 1 mol/L)                     | 4.0 mL/2 L               | 2.0 mmol/L               |

Capacity

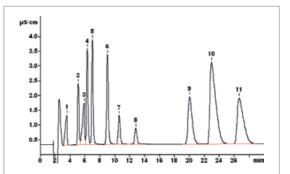
#### Care


site flow direction at a flow rate of 0.2 mL/min for 1 h dipicolinic acid for 1 h at a flow rate of 0.2 mL/min. with ultrapure water, then for 1 h with acetonitrile/water (40/60), and finally for 1 h with ultrapure water.

Inorganic contamination: Rinse the column in the oppo-Organic contamination: Rinse the column in the opposite flow direction with 10 mmol/L HNO<sub>3</sub> + 4 mmol/L


In the eluent or in ultrapure water








| Niti | ric acid/dipicolinic ad | id eluent, st | anda | ird Cor   | nc. (mg/L) |
|------|-------------------------|---------------|------|-----------|------------|
| 1    | Lithium                 | 1.00          | 4    | Potassium | 10.00      |
| 2    | Sodium                  | 5.00          | 5    | Calcium   | 10.00      |
| 3    | Ammonium                | 5.00          | 6    | Magnesium | 10.00      |



| Nitric acid eluent, traces of cations |            |      |   |           |           |  |
|---------------------------------------|------------|------|---|-----------|-----------|--|
| (MiPo                                 | CT), 40 °C |      |   | Con       | c. (µg/L) |  |
| 1                                     | Lithium    | 0.50 | 4 | Potassium | 0.50      |  |
| 2                                     | Sodium     | 0.50 | 5 | Magnesium | 0.50      |  |
| 3                                     | Ammonium   | 0.50 | 6 | Calcium   | 0.50      |  |



| Nitri | ic acid/dipicolinic a | cid eluent (m | od.), | standard | Conc | . (mg/L) |
|-------|-----------------------|---------------|-------|----------|------|----------|
| 1     | Zinc                  | 2.50          | 7     | Lead     |      | 2.50     |
| 2     | Lithium               | 0.25          | 8     | Cesium   |      | 2.50     |
| 3     | Cobalt                | 2.50          | 9     | Mangan   | ese  | 2.50     |
| 4     | Sodium                | 1.25          | 10    | Magnesi  | um   | 2.50     |
| 5     | Ammonium              | 1.25          | 11    | Calcium  |      | 2.50     |
| 6     | Potassium             | 2.50          |       |          |      |          |

| Ordering information     |            |
|--------------------------|------------|
| Metrosep C 4 - 150/2.0   | 6.1050.220 |
| Metrosep C 4 Guard/2.0   | 6.1050.600 |
| Metrosep C 4 S-Guard/2.0 | 6.1050.610 |

## Metrosep C 4 - 250/2.0 (6.1050.230)

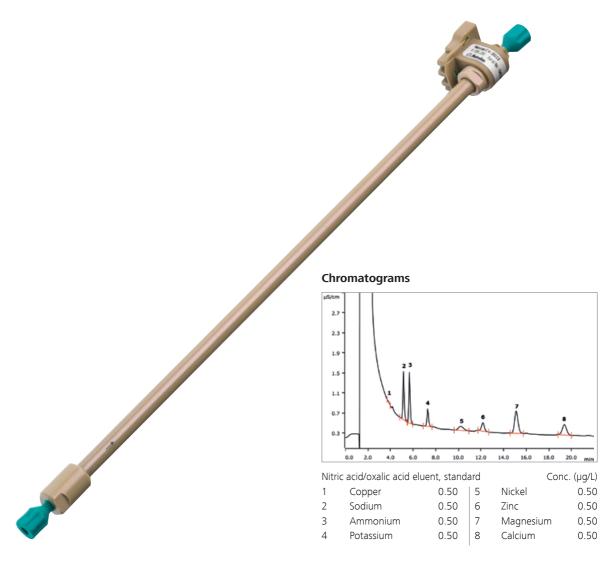
The Metrosep C 4 - 250/2.0 is the cation column with the greatest capacity in the Metrosep C 4 microbore series. It is predestined for applications which require the highest separating efficiency. Samples with high differences in concentrations can be analyzed reliably with this column. The performance capability of the column is demonstrated, for example, when analyzing of sodium traces in addition to monoethanolamine (MEA). With the Metrosep C 4 - 250/2.0, not only amines and transition metals but also alkaline and alkaline earth metals can be determined in a single run. With its low eluent flow, this column is particularly suitable for IC-MS coupling.

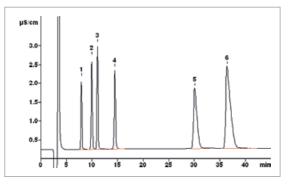
#### Applications

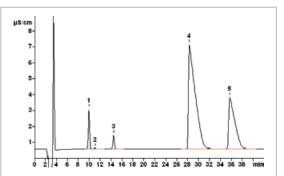
- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>, Co<sup>2+,</sup> Ni<sup>2+</sup>, Zn<sup>2+</sup>, Cd<sup>2+</sup>, Pb<sup>2+</sup>, amines
- Good Na<sup>+</sup>/NH<sub>4</sub><sup>+</sup> separation
- NH<sub>4</sub><sup>+</sup>, (CH<sub>3</sub>)NH<sub>3</sub><sup>+</sup>, (CH<sub>3</sub>)<sub>2</sub>NH<sub>2</sub><sup>+</sup>, (CH<sub>3</sub>)<sub>3</sub>NH<sup>+</sup>, (CH<sub>3</sub>)<sub>4</sub>N<sup>+</sup>, and the respective ethanolamines
- Difficult separation problems
- High differences in concentration
- Transition metals

| Technical information |                          |
|-----------------------|--------------------------|
| Substrate             | Silica gel with          |
|                       | carboxyl groups          |
| Column dimensions     | 250 x 2.0 mm             |
| Column body           | PEEK                     |
| Standard flow         | 0.2 mL/min               |
| Maximum flow          | 0.8 mL/min               |
| Maximum pressure      | 25 MPa                   |
| Particle size         | 5 μm                     |
| Organic modifier      | Eluent: 0-100% acetone   |
|                       | and acetonitrile (no     |
|                       | alcohols)                |
|                       | Sample: 0-100%           |
|                       | acetone, acetonitrile,   |
|                       | and alcohols             |
| pH range              | 2–7                      |
| Temperature range     | 20-60 °C                 |
| Capacity              | 6 µmol (K <sup>+</sup> ) |
|                       |                          |

#### Eluents


| Nitric acid/            | Nitric acid (c = 1 mol/L)             | 3.4 mL/2 L | 1.7 mmol/L |
|-------------------------|---------------------------------------|------------|------------|
| dipicolinic acid eluent | Dipicolinic acid                      | 234 mg/2 L | 0.7 mmol/L |
| (standard eluent)       |                                       |            |            |
| Nitric acid/            | Nitric acid ( $c = 1 \text{ mol/L}$ ) | 5.0 mL/2 L | 2.5 mmol/L |
| oxalic acid eluent      | Oxalic acid                           | 90 mg/2 L  | 0.5 mmol/L |


#### Care


Organic contamination: Rinse the column in the opposite flow direction at a flow rate of 0.2 mL/min for 1 h with dipicolinic acid for 1 h at a flow rate of 0.2 mL/min. ultrapure water, then for 1 h with acetonitrile/water (40/60), and finally for 1 h with ultrapure water.

Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L HNO<sub>3</sub> + 4 mmol/L

In the eluent or in ultrapure water







| Vitric | acid/dipicolinic acid | eluent, s | tandard | d Conc    | . (mg/L) | Nitric | acid/dipicolinic acid | d eluent, | drinking | water    | Conc. | (mg/L) |
|--------|-----------------------|-----------|---------|-----------|----------|--------|-----------------------|-----------|----------|----------|-------|--------|
|        | Lithium               | 1.00      | 4       | Potassium | 10.00    | 1      | Sodium                | 3.90      | 4        | Calcium  |       | 82.81  |
|        | Sodium                | 5.00      | 5       | Calcium   | 10.00    | 2      | Ammonium              | n.q.      | 5        | Magnesiu | m     | 18.76  |
|        | Ammonium              | 5.00      | 6       | Magnesium | 10.00    | 3      | Potassium             | 1.12      |          |          |       |        |

| Ordering information     |            |
|--------------------------|------------|
| Metrosep C 4 - 250/2.0   | 6.1050.230 |
| Metrosep C 4 Guard/2.0   | 6.1050.600 |
| Metrosep C 4 S-Guard/2.0 | 6.1050.610 |

## Metrosep C 6 - 100/2.0 (6.01051.210)

The 100 mm version of the microbore Metrosep C 6 column is intended for the determination of standard cations, for example in drinking water. Short retention times are attained with a relatively good sodium/ammonium separation. The high capacity of the Metrosep C 6 material permits larger sample volumes.

The column is suitable for use in IC-MS coupling.

## **Applications**

- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>
- Lipophilic amines with short retention times
- Rapid separations
- IC-MS coupling

#### **Technical information**

Substrate Silica gel with carboxyl groups

Column dimensions 100 x 2.0 mm

Column body PEEK Standard flow 0.25 mL/min 1.0 mL/min Maximum flow Maximum pressure 20 MPa

Particle size 5 µm

Organic modifier Eluent: 0-100% acetone

> and acetonitrile (no alcohols)

Sample: 0-100% acetone, acetonitrile,

and alcohols

pH range 2-7 Temperature range 20-60 °C

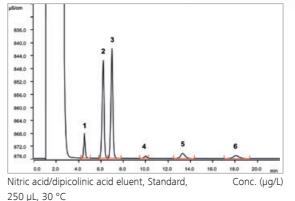
Standard temperature 20-30 °C Capacity 5 μmol (K<sup>+</sup>)

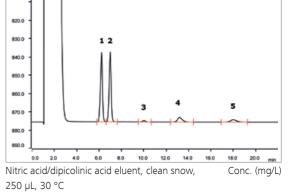
#### Eluent

Nitric acid/ Nitric acid (c = 1 mol/L) 3.4 mL/2 L 1.7 mmol/L dipicolinic acid eluent Dipicolinic acid 568 mg/2 L 1.7 mmol/L (standard eluent)

## Care

Regeneration


The column must be rinsed with ultrapure water before and after the regeneration.


Organic contamination: Rinse the column in the opposite flow direction at a flow rate of 0.25 mL/min for 1 h with Storage ultrapure water, then for 1 h with acetonitrile/water Standard eluent at 10–22 °C (40/60), and finally for 1 h with ultrapure water.

Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L HNO<sub>2</sub> + 4 mmol/L dipicolinic acid for 1 h at a flow rate of 0.25 mL/min.



#### Chromatograms





| 0 μL, 30 °C |     |   |           |     | 250 |
|-------------|-----|---|-----------|-----|-----|
| Lithium     | 40  | 4 | Potassium | 40  | 1   |
| Sodium      | 800 | 5 | Calcium   | 120 | 2   |
| Ammonium    | 800 | 6 | Magnesium | 40  | 3   |
|             |     | ' |           |     |     |

|     | 880.0 | 1     |       |         |        |      |        |        |      |        |      |       |       |
|-----|-------|-------|-------|---------|--------|------|--------|--------|------|--------|------|-------|-------|
| -   | 890.0 | 上     |       |         |        |      |        |        |      |        |      |       |       |
|     |       | 0.0   | 2.0   | 4.0     | 6.0    | 8.0  | 10.0   | 12.0   | 14.0 | 16.0   | 18.0 | 20.0  | min   |
| L)  | Nitri | acio  | d/dip | icolini | c acid | elue | nt, cl | ean sr | now, |        | Con  | c. (m | ig/L) |
|     | 250   | μL, 3 | 80 °C |         |        |      |        |        |      |        |      |       |       |
| 10  | 1     | So    | dium  | 1       |        | 1.0  | 44     | 4      | Cal  | cium   |      | 0.    | 200   |
| 0.0 | 2     | Ar    | nmo   | nium    |        | 0.9  | 05     | 5      | Ma   | gnesii | um   | 0.    | 058   |
| 10  | 3     | Po    | tassi | um      |        | 0.0  | 52     |        |      |        |      |       |       |
|     |       |       |       |         |        |      |        |        |      |        |      |       |       |

| Ordering information   |             |
|------------------------|-------------|
| Metrosep C 6 - 100/2.0 | 6.01051.210 |
| Metrosep C 6 Guard/2.0 | 6.01051.600 |

## Metrosep C 6 - 150/2.0 (6.01051.220)

The high-capacity Metrosep C 6 material makes the microbore Metrosep C 6 - 150/2.0 column the optimum solution for separating of standard cations with high differences in concentration with reasonable retention times. Drinking water with low ammonium contents can be determined with this column.

The column is suitable for use in IC-MS coupling.

#### Applications

- Standard column
- Amines
- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>
- Universal applications
- Different matrices
- Transition metals
- IC-MS coupling

| Technical  | information     |
|------------|-----------------|
| recillical | IIIIOIIIIatioii |

Substrate Silica gel with

carboxyl groups

Column dimensions 150 x 2.0 mm PEEK

Column body Standard flow 0.25 mL/min Maximum flow 0.7 mL/min Maximum pressure 20 MPa

Particle size

Organic modifier Eluent: 0-100% acetone

and acetonitrile (no

alcohols) Sample: 0-100%

8 μmol (K<sup>+</sup>)

acetone, acetonitrile,

and alcohols

2-7 pH range Temperature range 20-60 °C Standard temperature 20-30 °C

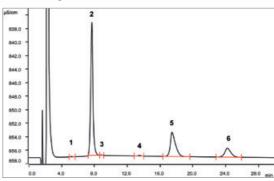
Capacity

Eluents

Nitric acid/ Nitric acid (c = 1 mol/L) 3.4 mL/2 L 1.7 mmol/L dipicolinic acid eluent Dipicolinic acid 568 mg/2 L 1.7 mmol/L (standard eluent)

Care

and after the regeneration.


Organic contamination: Rinse the column in the opposite flow direction at a flow rate of 0.25 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60), and finally for 1 h with ultrapure water.

Inorganic contamination: Rinse the column in the oppo-The column must be rinsed with ultrapure water before  $\frac{1}{2}$  site flow direction with 10 mmol/L HNO<sub>3</sub> + 4 mmol/L dipicolinic acid for 1 h at a flow rate of 0.25 mL/min.

Standard eluent at 10–22 °C



#### Chromatograms



Nitric acid/dipicolinic acid eluent,

| star | ndard, 30 °C, 5 μL |       |   |           |       |
|------|--------------------|-------|---|-----------|-------|
| 1    | Lithium            | 0.02  | 3 | Potassium | 0.21  |
| 2    | Sodium             | 20.75 | 4 | Calcium   | 10.42 |
| 3    | Ammonium           | 0.02  | 6 | Magnesium | 2.08  |

#### **Ordering information**

6.01051.220 Metrosep C 6 - 150/2.0 Metrosep C 6 Guard/2.0 6.01051.600

Conc. (mg/L)

## Metrosep C 6 - 250/2.0 (6.01051.230)

The Metrosep C 6 - 250/2.0 is the microbore cation column with the greatest capacity in the Metrosep C 6 series. It is predestined for applications which require the highest separating efficiency. Samples with extreme differences in concentrations can be analyzed reliably with this column. The separation of sodium and ammonium is particularly outstanding here. The column is suitable for use in IC-MS coupling.

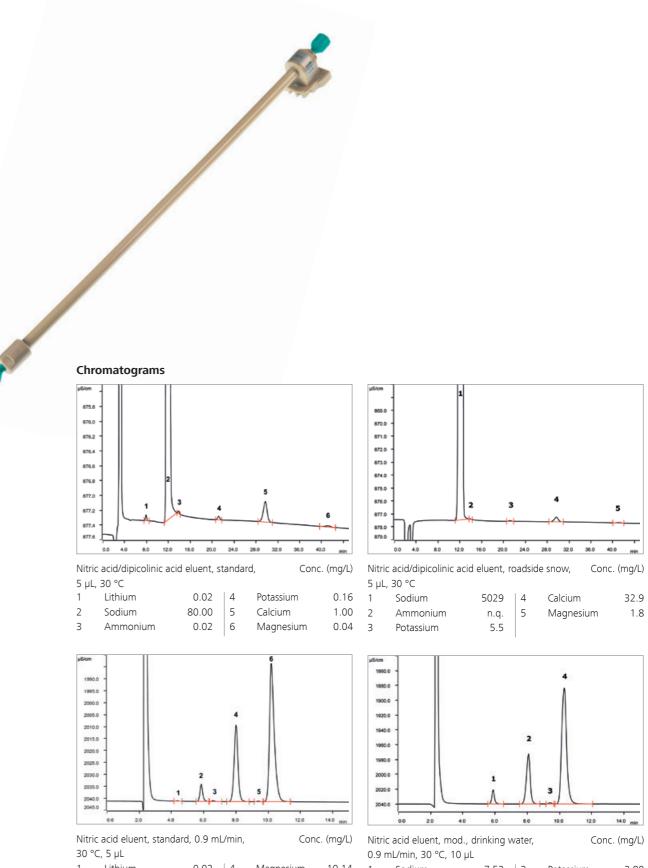
#### **Applications**

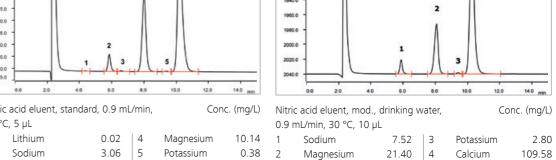
- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup>, Zn<sup>2+</sup>, Cd<sup>2+</sup>, Pb<sup>2+</sup>, amines
- Excellent Na<sup>+</sup>/NH<sub>4</sub><sup>+</sup> separation
- NH<sub>4</sub><sup>+</sup>, (CH<sub>3</sub>)NH<sub>3</sub><sup>+</sup>, (CH<sub>3</sub>)<sub>2</sub>NH<sub>2</sub><sup>+</sup>, (CH<sub>3</sub>)<sub>3</sub>NH<sup>+</sup>, (CH<sub>3</sub>)<sub>4</sub>N<sup>+</sup>, and the respective ethanolamines
- Difficult separation problems
- Great differences in concentration
- IC-MS coupling

| Technical information |                           |
|-----------------------|---------------------------|
| Substrate             | Silica gel with           |
|                       | carboxyl groups           |
| Column dimensions     | 250 x 2.0 mm              |
| Column body           | PEEK                      |
| Standard flow         | 0.25 mL/min               |
| Maximum flow          | 0.4 mL/min                |
| Maximum pressure      | 20 MPa                    |
| Particle size         | 5 μm                      |
| Organic modifier      | Eluent: 0-100% acetone    |
|                       | and acetonitrile (no      |
|                       | alcohols)                 |
|                       | Sample: 0-100%            |
|                       | acetone, acetonitrile,    |
|                       | and alcohols              |
| pH range              | 2-7                       |
| Temperature range     | 20-60 °C                  |
| Standard temperature  | 20-30 °C                  |
| Capacity              | 13 μmol (K <sup>+</sup> ) |

#### Eluents

| Nitric acid/            | Nitric acid ( $c = 1 \text{ mol/L}$ ) | 3.4 mL/2 L  | 1.7 mmol/L  |  |
|-------------------------|---------------------------------------|-------------|-------------|--|
| dipicolinic acid eluent | Dipicolinic acid                      | 568 mg/2 L  | 1.7 mmol/L  |  |
| (standard eluent)       | '                                     | 3           |             |  |
| Nitric acid eluent      | Nitric acid ( $c = 1 \text{ mol/L}$ ) | 13.5 mL/2 L | 6.75 mmol/L |  |


Regeneration


and after the regeneration.

Organic contamination: Rinse the column in the opposite flow direction at a flow rate of 0.25 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60), and finally for 1 h with ultrapure water.

Inorganic contamination: Rinse the column in the oppo-The column must be rinsed with ultrapure water before site flow direction with 10 mmol/L HNO3 + 4 mmol/L dipicolinic acid for 1 h at a flow rate of 0.25 mL/min.

> Storage Standard eluent at 10-22 °C





| Ordering information   |             |
|------------------------|-------------|
| Metrosep C 6 - 250/2.0 | 6.01051.230 |
| Metrosep C 6 Guard/2.0 | 6.01051.600 |

41.02

0.02 6

Ammonium

Calcium



# Separation columns



IC cation-separation columns for analyses with chemical suppression

## Metrosep C Supp 1 - 100/4.0 (6.1052.410)

The short version of the Metrosep C Supp 1 is used for the rapid determination of cations in the µg/L range with conductivity detection following sequential suppression.

The baseline noise in cation analysis is improved by the suppression. This results in lower detection limits for the cations to be determined.

#### **Applications**

- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>
- Samples with low concentrations
- Larger amines
- Low limits of detection
- Fast analysis
- Excellent peak shape
- Matrix with high pH

| Technical | :£     |        |
|-----------|--------|--------|
| Technical | Intorm | ıatıor |

Substrate

Polyvinyl alcohol with

carboxyl groups

Column dimensions

100 x 4.0 mm PEEK

Column body Standard flow

1.0 mL/min

Maximum flow Maximum pressure 1.5 mL/min 15 MPa

Particle size

5 um

Organic modifier

0-50% acetonitrile,

0-30% acetone,

no methanol

pH range

1-12

Temperature range Standard temperature

20-40 °C 40 °C

Capacity

12 μmol (K<sup>+</sup>)

Eluents

Nitric acid eluent (standard eluent)

Nitric acid (c = 1 mol/L) Rubidium

10 mL/2 L

5.0 mmol/L 172.5 μg/2 L (RbNO<sub>3</sub>) 50 μg/L Rb<sup>+</sup>

#### Care

## Note:

Ensure that the maximum pressure is never exceeded during regeneration. If the pressure becomes too high, reduce the flow rate.

#### Regeneration:

- 1. Disconnect the column outlet from the downstream function units such as suppressor or detector and collect the flow of liquid in a beaker instead.
- 2. Rinse the column with ultrapure water before and after regeneration.

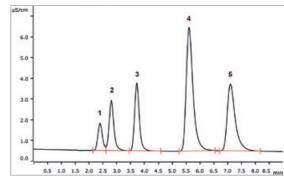
Depending on the type of contamination, proceed in accordance with one of the following instructions:

#### Organic contaminations:

Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min with the following solutions in succession:

- 1. 1 h with ultrapure water
- 2. 1 h with acetonitrile-water mixture (30:70)
- 3. 1 h with ultrapure water

#### Inorganic contaminations:


- 1. Add 30% acetonitrile to the standard eluent.
- 2. Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min for 1 h.

#### Storage

Store the column in ultrapure water at 4–8 °C. Do not store the column below 0 °C.



#### Chromatogram



| Nitr | ic acid eluent, star | ndard, 40 °C | Cor       | nc. (mg/L) |
|------|----------------------|--------------|-----------|------------|
| 1    | Lithium              | 1.00   4     | Magnesium | 10.00      |
| 2    | Sodium               | 5.00 5       | Calcium   | 10.00      |
| 3    | Potassium            | 10.00        |           |            |

#### **Ordering information**

Metrosep C Supp 1 - 100/4.0 6.1052.410 6.1052.500 Metrosep C Supp 1 Guard/4.0

## Metrosep C Supp 1 - 150/4.0 (6.1052.420)

The Metrosep C Supp 1 - 150/4.0 separation column is the column of choice for the determination of low concentrations of standard cations.

Detection limits below one µg/L are achieved through low baseline noise after sequential suppression.

## Applications

- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>
- Samples with low concentrations
- Organic amines
- Low limits of detection
- Transition metals
- Fast analysis
- Excellent peak shape
- Matrix with high pH

| Tac | hnical | intorr | mation |
|-----|--------|--------|--------|
|     |        |        |        |

Polyvinyl alcohol with Substrate carboxyl groups Column dimensions 150 x 4.0 mm Column body PEEK Standard flow 1.0 mL/min Maximum flow 1.5 mL/min Maximum pressure 15 MPa Particle size 5 µm 0-50% acetonitrile, Organic modifier 0-30% acetone, no methanol 1-12

pH range Temperature range

Standard temperature

Capacity

Eluents

Nitric acid eluent Nitric acid (c = 1 mol/L) (standard eluent) Rubidium

10 mL/2 L

5.0 mmol/L 172.5 μg/2 L (RbNO<sub>3</sub>) 50 μg/L Rb<sup>+</sup>

20-40 °C

18 μmol (K<sup>+</sup>)

40 °C

#### Care

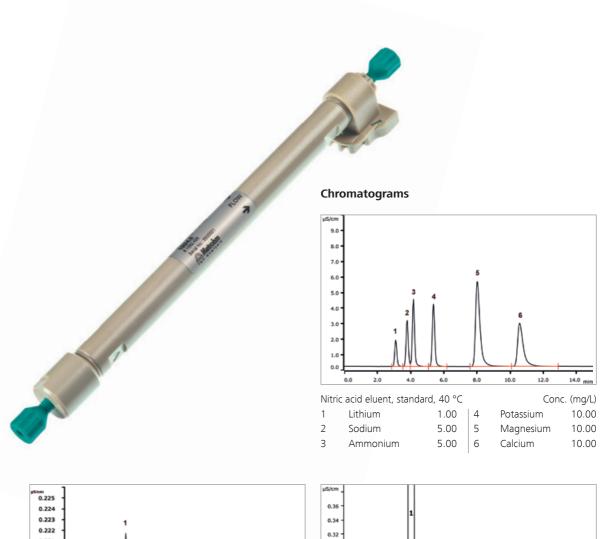
Ensure that the maximum pressure is never exceeded during regeneration. If the pressure becomes too high, reduce the flow rate.

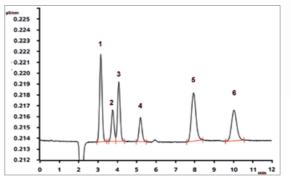
#### Regeneration:

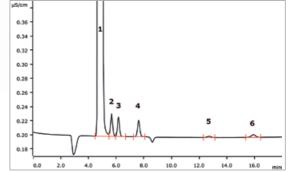
- 1. Disconnect the column outlet from the downstream function units such as suppressor or detector and collect the flow of liquid in a beaker instead.
- 2. Rinse the column with ultrapure water before and after regeneration.

Depending on the type of contamination, proceed in accordance with one of the following instructions:

#### Organic contaminations:


Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min with the following solutions in succession:


- 1. 1 h with ultrapure water
- 2. 1 h with acetonitrile-water mixture (30:70)
- 3. 1 h with ultrapure water


## Inorganic contaminations:

- 1. Add 30% acetonitrile to the standard eluent.
- 2. Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min for 1 h.

Store the column in ultrapure water at 4–8 °C. Do not store the column below 0 °C







| Vitric | acid eluent, trace sta | ndard, 4 | O°C | Conc.     | (µg/L) | Nitric | acid eluent, lithi | um hexafluor | de, 40 | °C C      | onc. (µg/ | L) |
|--------|------------------------|----------|-----|-----------|--------|--------|--------------------|--------------|--------|-----------|-----------|----|
| 1      | Lithium                | 10.0     | 4   | Potassium | 10.0   | 1      | Lithium            | 499          | 4      | Potassium | 3.        | 9  |
| 2      | Sodium                 | 10.0     | 5   | Magnesium | 10.0   | 2      | Sodium             | 3.4          | 5      | Magnesium | 0.        | 3  |
| 3      | Ammonium               | 10.0     | 6   | Calcium   | 10.0   | 3      | Ammonium           | 2.9          | 6      | Calcium   | 1.        | 5  |

| Ordering information        |            |
|-----------------------------|------------|
| Metrosep C Supp 1 - 150/4.0 | 6.1052.420 |
| Metrosep C Supp 1 Guard/4.0 | 6.1052.500 |

## Metrosep C Supp 1 - 250/4.0 (6.1052.430)

The Metrosep C Supp 1 - 250/4.0 separation column is used for difficult separations of standard cations, some transition cations and amines in the low concentration range. Conductivity detection after sequential suppression enables low detection limits thanks to low baseline noise.

## **Applications**

- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>
- Samples with low concentrations
- Good Na<sup>+</sup>/NH<sub>4</sub><sup>+</sup> separation
- Low limits of detection
- Matrix with high pH

| Technical | information |
|-----------|-------------|
| Substrata |             |

trate Polyvinyl alcohol with

carboxyl groups 250 x 4.0 mm

Column dimensions 250 x 4.0 mm
Column body PEEK
Standard flow 1.0 mL/min
Maximum flow 1.5 mL/min
Maximum pressure 15 MPa
Particle size 5 µm

Organic modifier 0–50% acetonitrile,

0–30% acetone, no methanol

30 μmol (K<sup>+</sup>)

pH range 1–12 Temperature range 20–40 °C Standard temperature 40 °C

Capacity

#### Eluents

Nitric acid eluent Nitric acid (c = 1 mol/L) 10 mL/2 L 5.0 mmol/L (standard eluent) Rubidium 172.5  $\mu$ g/2 L (RbNO<sub>3</sub>) 50  $\mu$ g/L Rb<sup>+</sup>

#### Care

#### Note

Ensure that the maximum pressure is never exceeded during regeneration. If the pressure becomes too high, reduce the flow rate.

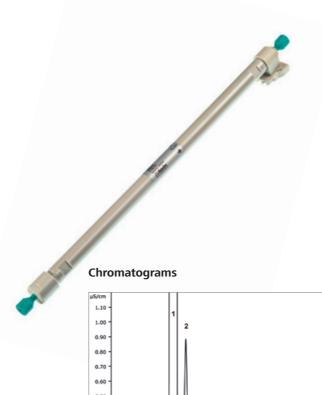
### Regeneration:

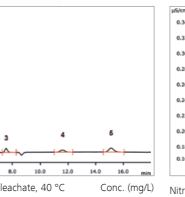
- 1. Disconnect the column outlet from the downstream function units such as suppressor or detector and collect the flow of liquid in a beaker instead.
- 2. Rinse the column with ultrapure water before and after regeneration.

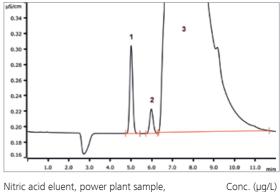
Depending on the type of contamination, proceed in accordance with one of the following instructions:

#### Organic contaminations:

Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min with the following solutions in succession:


- 1. 1 h with ultrapure water
- 2. 1 h with acetonitrile-water mixture (30:70)
- 3. 1 h with ultrapure water


#### Inorganic contaminations:


- 1. Add 30% acetonitrile to the standard eluent.
- 2. Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min for 1 h.

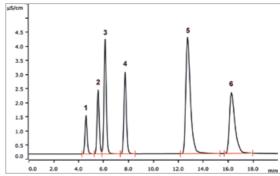
#### Storage

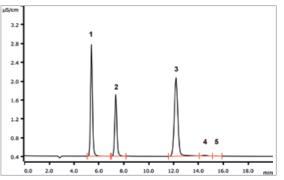
Store the column in ultrapure water at 4–8 °C. Do not store the column below 0 °C








Nitric acid eluent, geological leachate, 40 °C Conc. (mg/L)


1 Lithium 164.6 | 4 Magnesium 0.35
2 Sodium 12.9 | 5 Calcium 1.02
3 Potassium 0.81

6.0

Nitric acid eluent, power plant sample,
MiPCT-ME, 2000 µL, 40 °C

1 Lithium 1.0 | 3 Monoethanol- 4000
2 Sodium 1.0 | amine (MEA)





| Nitric acid eluent, standard, 40 °C Conc. (mg/L) |         |   |      |   |         |      |    |      |
|--------------------------------------------------|---------|---|------|---|---------|------|----|------|
| 1                                                | Lithium |   | 1.00 | 4 | Potassi | um   | 10 | 0.00 |
| 2                                                | Sodium  |   | 5.00 | 5 | Magne   | sium | 10 | 0.00 |
| 3                                                | Ammoniu | m | 5.00 | 6 | Calciun | n    | 10 | 0.00 |

Nitric acid eluent, magnesium sport drink, 40 °C Conc. (mg/L)
1 Sodium 227 | 4 Zinc 6.0
2 Potassium 202 | 5 Calcium 0.6
3 Magnesium 165

#### Ordering information

Metrosep C Supp 1 - 250/4.0 6.1052.430
Metrosep C Supp 1 Guard/4.0 6.1052.500

## Metrosep C Supp 2 - 100/4.0 (6.01053.410)

The Metrosep C Supp 2 separation material is based on a poly(styrene-co-divinylbenzene) copolymer with carboxyl groups. It is suitable for the separation and determination of monovalent and divalent cations. The Metrosep C Supp 2 - 100/4.0 column is the shortest separation column in the Metrosep C Supp 2 product range. It is especially suitable for trace analysis of standard cations. Limits of quantification below the µg/L range are achieved thanks to the extremely low baseline noise following sequential suppression.

#### **Applications**

- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>
- Samples with low concentrations
- Larger amines
- Low limits of detection
- Fast analysis
- Excellent peak shape
- Matrix with high pH

| <b>Technical information</b> |                               |
|------------------------------|-------------------------------|
| Substrate                    | Poly(styrene-co-              |
|                              | divinylbenzene) with          |
|                              | carboxyl groups               |
| Column dimensions            | 100 x 4.0 mm                  |
| Column body                  | PEEK                          |
| Standard flow                | 1.0 mL/min                    |
| Maximum flow                 | 3.8 mL/min                    |
| Maximum pressure             | 25 MPa                        |
| Particle size                | 5 μm                          |
| Organic modifier             | Eluent: 0–100% acetone        |
|                              | and acetonitrile (no alcohol) |
|                              | Sample: 0-100% acetone,       |
|                              | acetonitrile and alcohols     |
| pH range                     | Eluent: 0–12                  |
|                              | Sample: 0–14                  |
| Temperature range            | 10-60 °C                      |
| Standard temperature         | 40 °C                         |
| Capacity                     | 23 μmol (K <sup>+</sup> )     |
|                              |                               |

#### **Eluents**

| Liuciits           |                                       |                                   |                         |  |
|--------------------|---------------------------------------|-----------------------------------|-------------------------|--|
| Nitric acid eluent | Nitric acid ( $c = 1 \text{ mol/L}$ ) | 10 mL/2 L                         | 5.0 mmol/L              |  |
| (standard eluent)  | Rubidium                              | 172.5 μg/2 L (RbNO <sub>3</sub> ) | 50 μg/L Rb <sup>+</sup> |  |
| Nitric acid eluent | Nitric acid ( $c = 1 \text{ mol/L}$ ) | 14 mL/2 L                         | 7.0 mmol/L              |  |
| (modified)         | Rubidium                              | 172.5 μg/2 L (RbNO <sub>3</sub> ) | 50 μg/L Rb <sup>+</sup> |  |

#### Care

#### Note:

Ensure that the maximum pressure is never exceeded during regeneration. If the pressure becomes too high, reduce the flow rate.

#### Preparation:

Rinse the column with eluent for 3 h.

#### Regeneration:

- 1. Disconnect the column outlet from the downstream function units such as suppressor or detector and collect the flow of liquid in a beaker instead.
- 2. Depending on the type of contamination, proceed in accordance with one of the following instructions:

#### a. Organic contaminations:

Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min with the following solutions in succession:

- 1. 1 h with ultrapure water
- 2. 1 h with acetonitrile-water mixture (40:60)
- 3. 1 h with ultrapure water

## b. Inorganic contaminations:

Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min for 1 h with 50 mmol/L nitric acid.

Store the column in standard eluent at ambient temperature.



#### Chromatogram



| Ordering information        |             |
|-----------------------------|-------------|
| Metrosep C Supp 2 - 100/4.0 | 6.01053.410 |
| Metrosep C Supp 2 Guard/4.0 | 6.01053.500 |

## Metrosep C Supp 2 - 150/4.0 (6.01053.420)

The Metrosep C Supp 2 - 150/4.0 column is the standard separation column of the Metrosep C Supp 2 product range. It is suitable for the separation and determination of monovalent and divalent cations with an excellent sodium/ammonium separation. The Metrosep C Supp 2 separation material is based on a poly(styrene-co-divinyl-benzene) copolymer with carboxyl groups. The column is used with sequential suppression, therefore it is particularly suitable for determining concentrations in the middle µg/L range and below.

#### **Applications**

- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>
- Samples with low concentrations
- Organic amines
- Low limits of detection
- Transition metals
- Fast analysis
- Excellent peak shape
- Matrix with high pH

| I   |        |             |
|-----|--------|-------------|
| lec | nnıcaı | information |
|     |        |             |

Substrate

Poly(styrene-co-divinylbenzene) with carboxyl groups

Column dimensions

Column body

PEEK

Standard flow
1.0 mL/min
Maximum flow
3.1 mL/min
Maximum pressure
25 MPa
Particle size
5 µm

Organic modifier Eluent: 0–100% acetone and acetonitrile (no alcohol)

Sample: 0–100% acetone,

acetonitrile and alcohols

pH range Eluent: 0–12 Sample: 0–14

Temperature range 10–60 °C Standard temperature 40 °C

Capacity 35 µmol (K<sup>+</sup>)

#### Eluents

Nitric acid eluent Nitric acid (c = 1 mol/L) 10 mL/2 L 5.0 mmol/L (standard eluent) Rubidium 172.5  $\mu$ g/2 L (RbNO<sub>3</sub>) 50  $\mu$ g/L Rb<sup>+</sup>

#### Care

#### Note:

Ensure that the maximum pressure is never exceeded during regeneration. If the pressure becomes too high, reduce the flow rate.

#### Preparation:

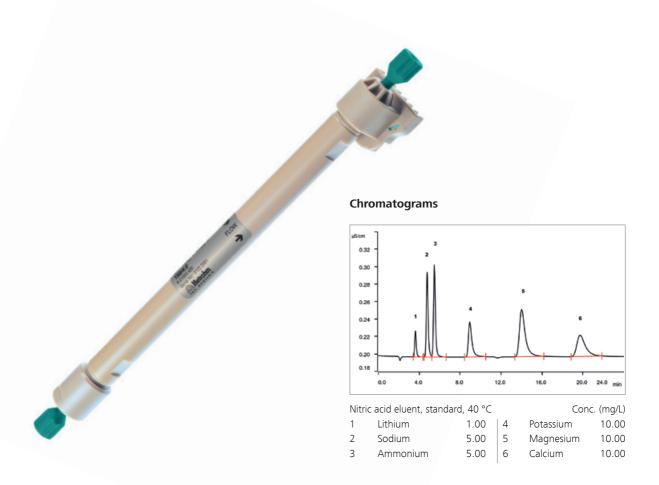
Rinse the column with eluent for 3 h.

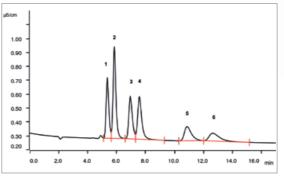
#### Regeneration:

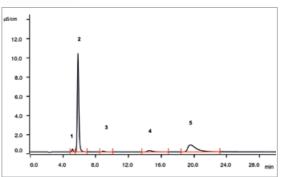
- 1. Disconnect the column outlet from the downstream function units such as suppressor or detector and collect the flow of liquid in a beaker instead.
- 2. Depending on the type of contamination, proceed in accordance with one of the following instructions:

#### a. Organic contaminations:

Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min with the following solutions in succession:


- 1. 1 h with ultrapure water
- 2. 1 h with acetonitrile-water mixture (40:60)
- 3. 1 h with ultrapure water


## b. Inorganic contaminations:


Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min for 1 h with 50 mmol/L nitric acid.

#### Storage

Store the column in standard eluent at ambient temperature.







| Nitrio | acid eluent, amines, 6 | 0 °C |   | Conc.          | (µg/L) | Nitr | ic acid eluent, rain | water, 40 °C |   | Cone      | c. (µg/L) |
|--------|------------------------|------|---|----------------|--------|------|----------------------|--------------|---|-----------|-----------|
| 1      | Monoethanolamine       | 2.0  | 4 | Dimethylamine  | 2.0    | 1    | Sodium               | 0.08         | 4 | Magnesium | 0.09      |
| 2      | Monomethylamine        | 2.0  | 5 | Trimethylamine | 2.0    | 2    | Ammonium             | 1.56         | 5 | Calcium   | 1.06      |
| 3      | Monoethylamine         | 2.0  | 6 | Diethylamine   | 2.0    | 3    | Potassium            | 0.07         |   |           |           |

| Ordering information        |             |
|-----------------------------|-------------|
| Metrosep C Supp 2 - 150/4.0 | 6.01053.420 |
| Metrosep C Supp 2 Guard/4.0 | 6.01053.500 |

## Metrosep C Supp 2 - 250/4.0 (6.01053.430)

The longest separation column in the Metrosep C Supp 2 product range is the Metrosep C Supp 2 - 250/4.0. The Metrosep C Supp 2 separation material is based on a poly(styrene-co-divinylbenzene) copolymer with carboxyl groups. Thanks to the optimized sodium/ammonium separation of this separation material, this column is perfectly suitable for determination of the smallest concentrations of ammonium in addition to a large amount of sodium. The column is used with sequential suppression. It is accordingly particularly suitable for determining concentrations in the middle µg/L range and below.

#### Applications

- Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>
- Samples with low concentrations
- Good Na<sup>+</sup>/NH<sub>4</sub><sup>+</sup> separation
- Low limits of detection
- Transition metals
- Excellent peak shape
- Matrix with high pH

| <b>Technical information</b> |                               |
|------------------------------|-------------------------------|
| Substrate                    | Poly(styrene-co-              |
|                              | divinylbenzene) copolymer     |
|                              | with carboxyl groups          |
| Column dimensions            | 250 x 4.0 mm                  |
| Column body                  | PEEK                          |
| Standard flow                | 1.0 mL/min                    |
| Maximum flow                 | 2.0 mL/min                    |
| Maximum pressure             | 25 MPa                        |
| Particle size                | 5 μm                          |
| Organic modifier             | Eluent: 0-100% acetone        |
|                              | and acetonitrile (no alcohol) |
|                              | Sample: 0-100% acetone,       |
|                              | acetonitrile and alcohols     |
| pH range                     | Eluent: 0–12                  |
|                              | Sample: 0–14                  |
| Temperature range            | 10-60 °C                      |
| Standard temperature         | 40 °C                         |
| Capacity                     | 58 μmol (K <sup>+</sup> )     |

#### Eluents

| Eluelits           |                                       |                                      |                           |
|--------------------|---------------------------------------|--------------------------------------|---------------------------|
| Nitric acid eluent | Nitric acid ( $c = 1 \text{ mol/L}$ ) | 14 mL/2 L                            | 7.0 mmol/L                |
| (modified)         | Rubidium                              | 172.5 μg/2 L (RbNO <sub>3</sub> )    | 50 μg/L Rb <sup>+</sup>   |
|                    | Acetonitrile                          | 40 mL/2 L                            | 2%                        |
| Gradient: Eluent A | Nitric acid (c = 1 mol/L)             | 2.5 mL/2 L                           | 1.25 mmol/L               |
|                    | Rubidium                              | 43.1 μg/2 L (RbNO <sub>3</sub> )     | 12.5 μg/L Rb <sup>+</sup> |
| Eluent B           | Nitric acid ( $c = 1 \text{ mol/L}$ ) | 25 mL/2 L                            | 12.5 mmol/L               |
|                    | Rubidium                              | 431 $\mu$ g/2 L (RbNO <sub>3</sub> ) | 125 μg/L Rb <sup>+</sup>  |
|                    |                                       |                                      |                           |

## Care

#### Note:

Ensure that the maximum pressure is never exceeded during regeneration. If the pressure becomes too high, reduce the flow rate.

## Preparation:

Rinse the column with eluent for 3 h.

#### Regeneration:

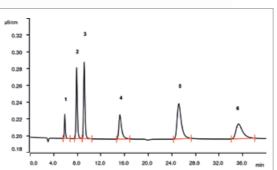
206

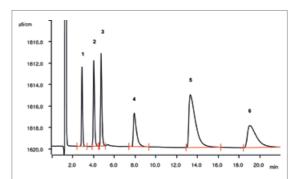
- 1. Disconnect the column outlet from the downstream function units such as suppressor or detector and collect the flow of liquid in a beaker instead.
- 2. Depending on the type of contamination, proceed in accordance with one of the following instructions:

#### a. Organic contaminations:

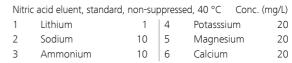
Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min with the following solutions in succession:

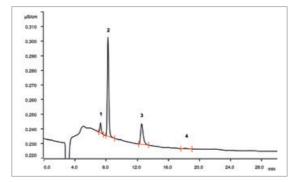
- 1. 1 h with ultrapure water
- 2. 1 h with acetonitrile-water mixture (40:60)
- 3. 1 h with ultrapure water

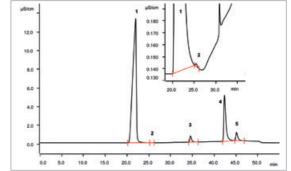

#### b. Inorganic contaminations:


Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min for 1 h with 50 mmol/L nitric acid.

#### torage


Store the column in standard eluent at ambient temperature.






| Nitric | acid eluent, stan | Cond | :. (μg/L) |           |     |
|--------|-------------------|------|-----------|-----------|-----|
| 1      | Lithium           | 25   | 4         | Potassium | 250 |
| 2      | Sodium            | 125  | 5         | Magnesium | 250 |
| 3      | Ammonium          | 125  | 6         | Calcium   | 250 |







| Nitri | ic acid eluent, (2% a | Conc. | (mg/L) |                |      |
|-------|-----------------------|-------|--------|----------------|------|
| hydi  | rogen peroxide, 50 °  | °C    |        |                |      |
| 1     | Sodium                | n.q.  | 3      | Potassium      | n.q. |
| 2     | Ammonium              | n.q.  | 4      | Trimethylamine | 0.17 |
|       |                       |       |        |                |      |

| Nitr | ic acid eluent, was | te water, 40 | °C | Cor       | nc. (mg/L) |
|------|---------------------|--------------|----|-----------|------------|
| 1    | Sodium              | 12076        | 4  | Magnesium | 1377.2     |
| 2    | Ammonium            | 1.2          | 5  | Calcium   | 435.2      |
| 3    | Potassium           | 432.5        |    |           |            |

| Ordering information        |             |
|-----------------------------|-------------|
| Metrosep C Supp 2 - 250/4.0 | 6.01053.430 |
| Metrosep C Supp 2 Guard/4.0 | 6.01053.500 |



# Separation columns



Separation column for the determination of organic substances

## MetroSil RP 3 - 150/4.0 (6.01070.420)

The MetroSil RP 3 - 150/4.0 is a reversed phase column with medium capacity which can be used universally with aqueous eluents as well as with aqueous samples. This property is especially important for applications in ion chromatography. The MetroSil RP 3 - 150/4.0 can be used to solve application problems which lie in the transition area between high-performance liquid chromatography and ion chromatography. The MetroSil RP 3 material is an "endcapped" C18 silica gel with a pore width of 120 angstroms.

#### **Applications**

- Determination of organic substances with low polarity and low charge
- Caffeine
- Determination of pharmaceutical products
- NTA, EDTA, DTPA (with UV/VIS detection)

| Technical       | intorma    | tion |
|-----------------|------------|------|
| I CCI II II Cai | 1111011110 |      |

Substrate Silica gel C<sub>18</sub> Column dimensions 150 x 4.0 mm Column body Stainless steel Standard flow 0.7 mL/min Maximum flow 5.0 mL/min 40 MPa Maximum pressure Particle size 5 µm Organic modifier 0-100% pH range 2-9 10-70 °C Temperature range

#### Eluents

| Acetonitrile/water                                    | Acetonitrile                            | 300 mL/2 L                | 15%        |
|-------------------------------------------------------|-----------------------------------------|---------------------------|------------|
| (standard eluent)                                     | Water                                   | 1700 mL/2 L               | 85%        |
| Nitrate/sulfuric acid/                                | Potassium nitrate                       | 4.044 g/2 L               | 20 mmol/L  |
| Methanol (phenol eluent)                              | Sulfuric acid ( $c = 1 \text{ mol/L}$ ) | 1.0 mL/2 L                | 0.5 mmol/L |
|                                                       |                                         |                           |            |
|                                                       | Methanol                                | 1000 mL/2 L               | 50%        |
| Acetonitrile/water/sulfuric acid                      | Methanol<br>Acetonitrile                | 1000 mL/2 L<br>300 mL/2 L | 50%<br>15% |
| Acetonitrile/water/sulfuric acid (paracetamol eluent) |                                         |                           |            |

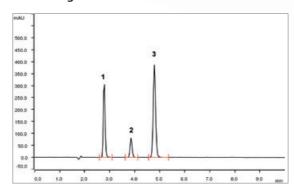
#### Care

Regeneration

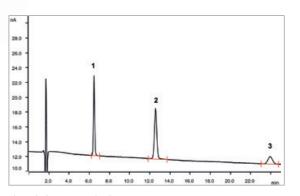
Rinse for 15 min at 1.0 mL/min with each of the following: 100% water, followed by acetonitrile, isopropanol, hexane, isopropanol, and back to acetonitrile.

Storage

For short periods (< 48 h):


Rinse the column for 30 min at 0.5 mL/min with acetonitrile/water 50:50 (v:v).

For prolonged periods (> 48 h):


Rinse the column with water for 30 min at 0.5 mL/min. Rinse the column with acetonitrile for 30 min at 0.5 mL/min.



#### Chromatograms







Phenol eluent, standard, temperature 32 °C, amperometric detection Conc. (µg/L)

1 Phenol 100 | 3 2,6 Dimethlyphenol 100

2 Cresol 100

| Ordering information                         |             |
|----------------------------------------------|-------------|
| MetroSil RP 3 - 150/4.0                      | 6.01070.420 |
| MetroSil RP 3 - Guard/4.0                    | 6.01070.500 |
| Cartridge holder for MetroSil RP 3 Guard/4.0 | 6.02821.010 |



# **Guard columns**



# IC guard columns (precolumns)

Optimum protection for the separation columns, minimal dead volume, the same phase, and therefore nearly no influence on the chromatography are the characteristics of the Metrohm IC guard columns. They are extremely efficient, easy to handle and yet economical.

# IC guard column cartridge for Hamilton PRP-X100 (6.1005.020)

For protecting Hamilton PRP-X100 columns. The cartridge efficiently removes contaminations in the form of particles due, for example, to the growth of bacteria and algae.

#### Applications

Anions

#### **Technical information**

 $\begin{array}{lll} \mbox{Column dimensions} & 20 \times 4.0 \mbox{ mm} \\ \mbox{Column body} & \mbox{Stainless steel} \\ \mbox{Particle size} & 10 \mbox{ } \mu m \\ \mbox{Type} & \mbox{Cartridge} \\ \end{array}$ 



# Ordering information Guard column cartridge for Hamilton PRP-X100 6.1005.020 Guard cartridge holder, 20 mm 6.02821.000 For use with Hamilton PRP-X100 - 100/4.0 6.1005.000 Hamilton PRP-X100 - 250/4.0 6.1005.010

# Super-Sep Guard/4.6 (6.1009.010)

For the protection of the Super-Sep - 100/4.6 analytical separation column

#### **Applications**

Anions

#### **Technical information**

 $\begin{array}{lll} \mbox{Column dimensions} & 12 \times 4.6 \mbox{ mm} \\ \mbox{Column body} & \mbox{Stainless steel} \\ \mbox{Particle size} & 12 \mbox{ } \mu m \\ \mbox{Type} & \mbox{Column} \\ \end{array}$ 



| Ordering information |            |
|----------------------|------------|
| Super-Sep Guard/4.6  | 6.1009.010 |
| For use with         |            |
| Super-Sep - 100/4.6  | 6.1009.000 |

# Metrosep Dual 4 Guard Column kit (6.1016.500)

Even if the Dual-4 columns based on monolithic silica gel are very durable, the use of the Dual 4 guard column is advised in order to increase the safety of the analytical separation column even more. The Dual 4 guard column is a PEEK cartridge which is also filled with monolithic silica gel. This cartridge is easy to replace and is screwed directly onto the analytical column in an aluminum holder. The proven «On Column Guard System» is simple to use and also offers the advantage of minimal dead volume



**Technical information** 

Monolithic silica gel Substrate 5 x 4.6 mm Column dimensions Column body PEEK cartridge in an aluminum cartridge holder

(replaceable)

Particle size Monolith with 2 µm

> Macropores and 13 nm Mesopores

Organic modifier 0-5% methanol or

acetonitrile only

pH range 0-8 Type Cartridge



# Metrosep A Supp 1 Guard/4.6 (6.1005.340)

The Metrosep A Supp 1 Guard/4.6 protects the Metrosep A Supp 1 - 250/4.6 separation column securely against contamination from particles and bacteria.

### **Applications**

Anions

Type

Oxhalogenides

**Technical information** 

Poly(styrene-co-Substrate

> divinylbenzene) with quaternary

ammonium groups

Column dimensions 50 x 4.6 mm

Column body PEEK Particle size 7 µm Organic modifier 0-100% pH range 0-13 Column

**Ordering information** 6.1005.340 Metrosep A Supp 1 Guard/4.6 For use with Metrosep A Supp 1 - 250/4.6 6.1005.300

**Ordering information** Guard column kit for the Metrosep Dual 4, comprised of three guard column cartridges and one guard column cartridge holder 6.1016.500 Guard column cartridges for the Metrosep Dual 4 (3 pcs.) 6.1016.510 For use with Metrosep Dual 4 - 100/4.6 6.1016.030

# Metrosep A Supp 4 Guard/4.0 (6.01021.500) Metrosep A Supp 4 S-Guard/4.0 (6.01021.510)

The Metrosep A Supp 4 Guard/4.0 reliably protects the Metrosep A Supp 4 - 250/4.0 anion column against contamination from the sample or eluent. It contains the same separation material as the Metrosep A Supp 4, is also made of PEEK, and is screwed directly onto the separation column with nearly no dead volume («On Column Guard System»). The guard column prolongs the lifetime of the analytical column, with practically no influence on its chromatographic separation performance. The economical price and simple handling make using the Metrosep A Supp 4 Guard/4.0 highly recommended.

### **Applications**

Anions

pH range

| <b>Technical information</b> |                        |
|------------------------------|------------------------|
| Substrate                    | Polyvinyl alcohol with |
|                              | quaternary             |
|                              | ammonium groups        |
| Column dimensions            | 5 x 4.0 mm             |
| Column body                  | PEEK                   |
| Particle size                | 9 μm                   |
| Organic modifier             | 0-100% (particularly   |
|                              | acetone, acetonitrile, |
|                              | methanol)              |

3-12

Column



| 6.01021.500 |
|-------------|
| 6.01021.510 |
| 6.1006.430  |
|             |

# Metrosep A Supp 4 Guard/2.0 (6.01021.600)

The Metrosep A Supp 4 Guard/2.0 reliably protects the Metrosep A Supp 4 microbore anion column against contamination from the sample or eluent. It contains the same separation material as the Metrosep A Supp 4, is also made of PEEK, and is screwed directly onto the separation column with nearly no dead volume («On Column Guard System»). The guard column prolongs the lifetime of the analytical column, with practically no influence on its chromatographic separation performance. The economical price and simple handling make using the Metrosep A Supp 4 Guard/2.0 highly recommended.

| Applications             | 5 |
|--------------------------|---|
| <ul><li>Anions</li></ul> |   |

**Technical information** 

Substrate Polyvinyl alcohol with

quaternary

ammonium groups s 5 x 2.0 mm

Column dimensions
Column body

PEEK

Particle size

9 µm

Organic modifier 0

0–100% (particularly acetone, acetonitrile,

methanol)

3-12

Column

pH range

Туре



### Ordering information

Metrosep A Supp 4 Guard/2.0 6.01021.600

For use with

Metrosep A Supp 4 - 250/2.0 6.01021.230

# Metrosep A Supp 5 Guard/4.0 (6.1006.500) Metrosep A Supp 5 S-Guard/4.0 (6.1006.540)

The Metrosep A Supp 5 Guard/4.0 reliably protects the Metrosep A Supp 5 and 7 anion columns against contamination from the sample or eluent. It contains the same separation material as the Metrosep A Supp 5, is also made of PEEK, and is screwed directly onto the separation column with nearly no dead volume («On Column Guard System»). The guard column prolongs the lifetime of the analytical column, with practically no influence on its chromatographic separation performance. The economical price and simple handling make using the Metrosep A Supp 5 Guard/4.0 highly recommended.



Anions

| Technical information |                        |
|-----------------------|------------------------|
| Substrate             | Polyvinyl alcohol with |
|                       | quaternary             |
|                       | ammonium groups        |
| Column dimensions     | 5 x 4.0 mm             |
| Column body           | PEEK                   |
| Particle size         | 5 μm                   |
| Organic modifier      | 0–100% (particularly   |
|                       | acetone, acetonitrile, |
|                       | methanol)              |
| pH range              | 3–12                   |
| Туре                  | Column                 |



### The Metrosep A Supp 5 Guard/2.0 reliably protects the Metrosep A Supp 5 and 7 microbore anion columns Anions against contamination from the sample or eluent. It contains the same separation material as the Metrosep A Supp 5, is also made of PEEK, and is screwed directly Substrate onto the separation column with nearly no dead volume («On Column Guard System»). The guard column prolongs the lifetime of the analytical column, with practi-

Metrosep A Supp 5 Guard/2.0 (6.1006.600)

Metrosep A Supp 5 S-Guard/2.0 (6.1006.610)

cally no influence on its chromatographic separation performance. The economical price and simple handling make using the Metrosep A Supp 5 Guard/2.0 highly recommended.

### **Applications**

**Technical information** Polyvinyl alcohol with quaternary ammonium groups

Column dimensions 5 x 2.0 mm Column body PEEK Particle size 5 µm Organic modifier

0-100% (particularly acetone, acetonitrile,

methanol)

3-12 pH range Column



| Ordering information          |            |
|-------------------------------|------------|
| Metrosep A Supp 5 Guard/4.0   | 6.1006.500 |
| Metrosep A Supp 5 S-Guard/4.0 | 6.1006.540 |
| For use with                  |            |
| Metrosep A Supp 5 - 50/4.0    | 6.1006.550 |
| Metrosep A Supp 5 - 100/4.0   | 6.1006.510 |
| Metrosep A Supp 5 - 150/4.0   | 6.1006.520 |
| Metrosep A Supp 5 - 250/4.0   | 6.1006.530 |
| Metrosep A Supp 7 - 150/4.0   | 6.1006.620 |
| Metrosep A Supp 7 - 250/4.0   | 6.1006.630 |

| Ordering information          |            |
|-------------------------------|------------|
| Metrosep A Supp 5 Guard/2.0   | 6.1006.600 |
| Metrosep A Supp 5 S-Guard/2.0 | 6.1006.610 |
| For use with                  |            |
| Metrosep A Supp 5 - 150/2.0   | 6.1006.220 |
| Metrosep A Supp 5 - 250/2.0   | 6.1006.230 |
| Metrosep A Supp 7 - 150/2.0   | 6.1006.640 |
| Metrosep A Supp 7 - 250/2.0   | 6.1006.650 |
|                               |            |

# Metrosep A Supp 10 Guard/4.0 (6.1020.500) Metrosep A Supp 10 S-Guard/4.0 (6.1020.510) Metrosep A Supp 10 Guard HC/4.0 (6.1020.520)

The Metrosep A Supp 10 Guard/4.0 reliably protects the Metrosep A Supp 10 separation columns against contamination. Thanks to the «On Column Guard System», the guard column is very easy to handle. The guard column screws easily and directly onto the analytical column. No tools are required.



### **Applications**

Anions

| <b>Technical information</b> |                           |
|------------------------------|---------------------------|
| Substrate                    | Poly(styrene-co-          |
|                              | divinylbenzene) with      |
|                              | quaternary                |
|                              | ammonium groups           |
| Column dimensions            | 6.1020.500: 5 x 4.0 mm    |
|                              | 6.1020.510: 5 x 4.0 mm    |
|                              | 6.1020.520: 12.5 x 4.0 mm |
| Column body                  | PEEK                      |
| Particle size                | 4.6 µm                    |
| Organic modifier             | 0-100%                    |
| pH range                     | 0-14                      |
| Туре                         | Column                    |
|                              |                           |

The Metrosep A Supp 10 Guard HC/4.0 is the high-capacity variant of the Metrosep A Supp 10 Guard/4.0.

The separation of cyclamate and phosphate is significantly improved when the Metrosep A Supp 5 - 100/4.0 (6.1006.510) is combined with the Metrosep A Supp 10 Guard HC/4.0.

| Ordering information                                                           |            |
|--------------------------------------------------------------------------------|------------|
| Metrosep A Supp 10 Guard/4.0                                                   | 6.1020.500 |
| Metrosep A Supp 10 S-Guard/4.0                                                 | 6.1020.510 |
| Metrosep A Supp 10 Guard HC/4.0                                                | 6.1020.520 |
| For use with                                                                   |            |
| Metrosep A Supp 5 - 100/4.0 (with Metrosep A Supp 10 Guard HC/4.0; 6.1020.520) | 6.1006.510 |
| Metrosep A Supp 10 - 50/4.0                                                    | 6.1020.050 |
| Metrosep A Supp 10 - 75/4.0                                                    | 6.1020.070 |
| Metrosep A Supp 10 - 100/4.0                                                   | 6.1020.010 |
| Metrosep A Supp 10 - 250/4.0                                                   | 6.1020.030 |

# Metrosep A Supp 10 Guard/2.0 (6.1020.600)

The Metrosep A Supp 10 Guard/2.0 column reliably protects the Metrosep A Supp 10 microbore separation columns against contamination. Thanks to the «On Column Guard System», the guard column is very easy to handle. The guard column screws easily and directly onto the analytical column. No tools are required.

### **Applications**

• Anions

# Technical information Substrate Poly(styrene-codivinylbenzene) with quaternary ammonium groups Column dimensions 5 x 2.0 mm Column body PEEK

Column body PEEK
Particle size 4.6 µm
Organic modifier 0–100%
pH range 0–14
Type Column



| Ordering information         |            |
|------------------------------|------------|
| Metrosep A Supp 10 Guard/2.0 | 6.1020.600 |
| For use with                 |            |
| Metrosep A Supp 10 - 50/2.0  | 6.1020.250 |
| Metrosep A Supp 10 - 75/2.0  | 6.1020.270 |
| Metrosep A Supp 10 - 100/2.0 | 6.1020.210 |
| Metrosep A Supp 10 - 150/2.0 | 6.1020.220 |
| Metrosep A Supp 10 - 250/2.0 | 6.1020.230 |

# Metrosep A Supp 16 Guard/4.0 (6.1031.500) Metrosep A Supp 16 S-Guard/4.0 (6.1031.510)

The Metrosep A Supp 16 Guard/4.0 reliably protects the Metrosep A Supp 16 analytical separation columns against contamination. Thanks to the «On Column Guard System», the guard column is very easy to handle. The guard column screws easily onto the analytical column. No tools are required.

### **Applications**

Anions

| <b>Technical information</b> |                      |
|------------------------------|----------------------|
| Substrate                    | Poly(styrene-co-     |
|                              | divinylbenzene) with |
|                              | quaternary           |
|                              | ammonium groups      |
| Column dimensions            | 5 x 4.0 mm           |
| Column body                  | PEEK                 |
| Particle size                | 4.6 µm               |
| Organic modifier             | 0-10%                |
| pH range                     | 0-14                 |
| Туре                         | Column               |



| Ordering information           |            |
|--------------------------------|------------|
| Metrosep A Supp 16 Guard/4.0   | 6.1031.500 |
| Metrosep A Supp 16 S-Guard/4.0 | 6.1031.510 |
|                                |            |
| For use with                   |            |
| Metrosep A Supp 16 - 100/4.0   | 6.1031.410 |
| Metrosep A Supp 16 - 150/4.0   | 6.1031.420 |
| Metrosep A Supp 16 - 250/4.0   | 6.1031.430 |
| Metrosep A Supp 7 - 150/4.0    | 6.1006.620 |
| Metrosep A Supp 7 - 250/4.0    | 6.1006.630 |

# Metrosep A Supp 16 Guard/2.0 (6.1031.600) Metrosep A Supp 16 S-Guard/2.0 (6.1031.610)

The Metrosep A Supp 16 Guard/2.0 reliably protects the Metrosep A Supp 16 analytical separation columns with 2 mm inner diameter against contamination. Thanks to the «On Column Guard System», the guard column is very easy to handle. The guard column screws easily onto the analytical column. No tools are required.

### **Applications**

• For anions

| recnnical information |                      |
|-----------------------|----------------------|
| Substrate             | Poly(styrene-co-     |
|                       | divinylbenzene) with |
|                       | quaternary           |
|                       | ammonium groups      |
| Column dimensions     | 5 x 2.0 mm           |
| Column body           | PEEK                 |
| Particle size         | 4.6 µm               |

0-10%

0-14

Column



| Ordering information           |            |
|--------------------------------|------------|
| Metrosep A Supp 16 Guard/2.0   | 6.1031.600 |
| Metrosep A Supp 16 S-Guard/2.0 | 6.1031.610 |
| For use with                   |            |
| Metrosep A Supp 16 - 100/2.0   | 6.1031.210 |
| Metrosep A Supp 16 - 150/2.0   | 6.1031.220 |
| Metrosep A Supp 16 - 250/2.0   | 6.1031.230 |
| Metrosep A Supp 7 - 150/2.0    | 6.1006.640 |
| Metrosep A Supp 7 - 250/2.0    | 6.1006.650 |
|                                |            |

# Metrosep A Supp 17 Guard/4.0 (6.01032.500) Metrosep A Supp 17 S-Guard/4.0 (6.01032.510) Metrosep A Supp 17 S-Guard - 50/4.0 (6.01032.530)

The Metrosep A Supp 17 Guard/4.0 reliably protects the Metrosep A Supp 17 analytical separation columns against contamination. Thanks to the «On Column Guard System», the guard column is very easy to handle. The guard column screws easily onto the analytical column. No tools are required.

### **Applications**

Anions

| Technical information |                          |
|-----------------------|--------------------------|
| Substrate             | Poly(styrene-co-         |
|                       | divinylbenzene) with     |
|                       | quaternary               |
|                       | ammonium groups          |
| Column dimensions     | 5 x 4.0 mm, and          |
|                       | 50 x 4.0 mm respectively |
| Column body           | PEEK                     |
| Particle size         | 5.0 μm                   |
| Organic modifier      | 0-100% methanol          |
|                       | 0-40% acetone or         |
|                       | acetonitrile             |
| pH range              | 0-14                     |
| Туре                  | Column                   |
|                       |                          |



# Ordering information Metrosep A Supp 17 Guard/4.0 6.01032.500 Metrosep A Supp 17 S-Guard/4.0 6.01032.510 Metrosep A Supp 17 S-Guard - 50/4.0 6.01032.530 For use with Metrosep A Supp 17 - 100/4.0 6.01032.410 Metrosep A Supp 17 - 150/4.0 6.01032.420 Metrosep A Supp 17 - 250/4.0 6.01032.430

# Metrosep A Supp 18 Guard/4.0 (6.01033.500)

The Metrosep A Supp 18 Guard/4.0 reliably protects the Metrosep A Supp 18 analytical separation column against contamination from sample or eluent. It contains the same separation material as the Metrosep A Supp 18 IC Columns, is also made of PEEK, and is screwed directly onto the respective separating column with virtually no dead volume («On Column Guard System»). The guard column prolongs the service life of the analytical column, without influencing chromatographic separating efficiency.

### **Applications**

Anions

**Technical information** Polyvinyl alcohol Substrate with quaternary ammonium groups Column dimensions 5 x 4.0 mm PEEK Column body Particle size 3.5 µm Organic modifier 0-100% (particularly acetone, acetonitrile, methanol) pH range 3-13 Column



| Ordering information         |             |
|------------------------------|-------------|
| Metrosep A Supp 18 Guard/4.0 | 6.01033.500 |
| For use with                 |             |
| Metrosep A Supp 18 - 150/4.0 | 6.01033.420 |
| Metrosep A Supp 18 - 250/4.0 | 6.01033.430 |
| 1 11                         |             |
| Metrosep A Supp 18 - 250/4.0 | 6.01033.43  |

# Metrosep A Supp 19 Guard/4.0 (6.01034.500)

The Metrosep A Supp 19 Guard/4.0 reliably protects the anion separation columns of the Metrosep A Supp 19 product family against contaminations from the sample or eluent and thus prolong their service life significantly. The guard columns and separation columns of the Metrosep A Supp 19 product family are made of PEEK and filled with the same material. This ensures that the chromatographic separating efficiency is not restricted in any way.

The «On Column Guard System» makes it possible to screw the guard column onto the anion separation column directly and conveniently. The economical price and simple handling make the Metrosep A Supp 19 Guard/4.0 the ideal protection for the separation column.

### **Applications**

Anions

| <b>Technical information</b> |                             |
|------------------------------|-----------------------------|
| Substrate                    | Hydrophilized poly(styrene- |
|                              | co-divinylbenzene)          |
|                              | with quaternary             |
|                              | ammonium groups             |
| Column dimensions            | 5 x 4.0 mm                  |
| Column body                  | PEEK                        |
| Particle size                | 4.6 µm                      |
| Organic modifier             | 0-100% (particularly        |
|                              | acetone, acetonitrile,      |
|                              | methanol)                   |
| pH range                     | 0–14                        |
| Туре                         | Column                      |



| Ordering information         |             |
|------------------------------|-------------|
| Metrosep A Supp 19 Guard/4.0 | 6.01034.500 |
|                              |             |
| For use with                 |             |
| Metrosep A Supp 19 - 100/4.0 | 6.01034.410 |
| Metrosep A Supp 19 - 150/4.0 | 6.01034.420 |
| Metrosep A Supp 19 - 250/4.0 | 6.01034.430 |

# Metrosep A Supp 21 Guard/4.0 (6.01036.500)

The Metrosep A Supp 21 Guard/4.0 reliably protects the analytic Metrosep A Supp 21 IC Columns against contamination from the sample or eluent. It contains the same stationary phase as the Metrosep A Supp 21 IC Columns, which is packed in a PEEK guard column housing. As it is screwed directly onto the respective separation column, practically no dead volume is created («On Column Guard System»). The guard column prolongs the service life of the analytical column, without influencing chromatographic separating efficiency.

### Applications

• Anions

**Technical information** Hydrophilized poly(styrene-Substrate co-divinylbenzene) with quaternary ammonium groups 5 x 4.0 mm Column dimensions Column body PEEK Particle size 4.6 µm Organic modifier 0-100% (particularly acetone, acetonitrile, methanol) 0-14 pH range Type Column



| Ordering information         |             |
|------------------------------|-------------|
| Metrosep A Supp 21 Guard/4.0 | 6.01036.500 |
| For use with                 |             |
|                              |             |
| Metrosep A Supp 21 - 150/4.0 | 6.01036.420 |

# Metrosep Organic Acids Guard/4.6 (6.1005.250)

The Metrosep Organic Acids Guard/4.6 effectively removes contamination, thus protecting the analytical separation column.

### Applications

• Organic acids

Type

# Technical information Substrate Poly(styrene-codivinylbenzene) with sulfonic acid groups Column dimensions Column body Particle size Organic modifier pH range Poly(styrene-codivinylbenzene) with sulfonic acid groups 50 x 4.6 mm Stainless steel 9 µm 0-20% pH range 1–13

Column



| Ordering information             |            |
|----------------------------------|------------|
| Metrosep Organic Acids Guard/4.6 | 6.1005.250 |
|                                  |            |
| For use with                     |            |
| Metrosep Organic Acids - 100/7.8 | 6.1005.210 |
| Metrosep Organic Acids - 250/7.8 | 6.1005.200 |

# Metrosep Carb 2 Guard/4.0 (6.1090.500) Metrosep Carb 2 S-Guard/4.0 (6.1090.510)

The Metrosep Carb 2 Guard/4.0 and the Metrosep Carb 2 S-Guard/4.0 effectively remove contaminations, thus protecting the analytical separation column. The design of the guard column has been selected in such a way that its influence on chromatographic separation can be ignored.

# ApplicationsCarbohydrates

Technical information

Substrate Poly(styrene-co-divinylbenzene) with

quaternary ammonium groups

Column dimensions 5 x 4.0 mm
Column body PEEK

Particle size 5 µm

Organic modifier 0–50% acetonitrile or

methanol (eluent) 0–100% acetone, acetonitrile or methanol

(sample)

pH range 0–14
Type Column



| Ordering information        |            |
|-----------------------------|------------|
| Metrosep Carb 2 Guard/4.0   | 6.1090.500 |
| Metrosep Carb 2 S-Guard/4.0 | 6.1090.510 |
| For use with                |            |
| Metrosep Carb 2 - 100/4.0   | 6.1090.410 |
| Metrosep Carb 2 - 150/4.0   | 6.1090.420 |
| Metrosep Carb 2 - 250/4.0   | 6.1090.430 |

# Metrosep Carb 2 Guard/2.0 (6.01090.600)

The Metrosep Carb 2 Guard/2.0 microbore guard column effectively removes contamination, thus protecting the analytical separation column. The design of the guard column has been selected in such a way that its influence on the chromatographic separation can be ignored.

### Applications

Carbohydrates

| Technical information |                          |
|-----------------------|--------------------------|
| Substrate             | Poly(styrene-co-         |
|                       | divinylbenzene) with     |
|                       | quaternary               |
|                       | ammonium groups          |
| Column dimensions     | 5 x 2.0 mm               |
| Column body           | PEEK                     |
| Particle size         | 5 μm                     |
| Organic modifier      | 0-50% acetonitrile or    |
|                       | methanol (eluent)        |
|                       | 0-100% acetone,          |
|                       | acetonitrile or methanol |
|                       | (sample)                 |
| pH range              | 0-14                     |
| Type                  | Column                   |



# Ordering information Metrosep Carb 2 Guard/2.0 6.01090.600 For use with 6.01090.210 Metrosep Carb 2 - 100/2.0 6.01090.210 Metrosep Carb 2 - 150/2.0 6.01090.220 Metrosep Carb 2 - 250/2.0 6.01090.230

# Nucleosil 5SA 2 Guard Cartridge/4.0 (6.1007.110)

For the protection of the Nucleosil 5SA - 125/4.0 analytical separation column. Requires the 6.2821.140 holder for connection to the separation column.

### **Applications**

Cations

### **Technical information**

Substrate

Spherical silica gel with sulfonic acid groups

Column dimensions
Column body
Particle size

20 x 4.0 mm Stainless steel

5 µm Cartridge



| Ordering information                          |            |
|-----------------------------------------------|------------|
| Nucleosil 5SA 2 Guard Cartridge/4.0           | 6.1007.110 |
| Holder to Nucleosil 5SA 2 Guard Cartridge/4.0 | 6.2821.140 |
| For use with                                  |            |
| IC Cation Column Nucleosil 5SA - 125/4.0      | 6.1007.000 |

# Metrosep C 3 Guard/4.0 (6.1010.450) Metrosep C 3 S-Guard/4.0 (6.1010.460)

The Metrosep C 3 Guard/4.0 contains the Metrosep C 3 Applications column material and is used to protect Metrosep C 3 cation columns. Particles and contaminations are reliably retained, considerably prolonging the service life of the analytical separation column. The Metrosep C 3 Guard/4.0 also works based on the «On Column Guard System» and is screwed directly onto the separation column with nearly no dead volume.



| Technical information |                         |
|-----------------------|-------------------------|
| Substrate             | Polyvinyl alcohol with  |
|                       | carboxyl groups         |
| Column dimensions     | 5 x 4.0 mm              |
| Column body           | PEEK                    |
| Particle size         | 5 μm                    |
| Organic modifier      | 50% acetonitrile or 30% |
|                       | acetone (no methanol)   |
| pH range              | 2–12                    |
| Type                  | Column                  |

| Ordering information     |            |
|--------------------------|------------|
| Metrosep C 3 Guard/4.0   | 6.1010.450 |
| Metrosep C 3 S-Guard/4.0 | 6.1010.460 |
|                          |            |
| For use with             |            |
| Metrosep C 3 - 100/4.0   | 6.1010.410 |
| Metrosep C 3 - 150/4.0   | 6.1010.420 |
| Metrosep C 3 - 250/4.0   | 6.1010.430 |
|                          |            |

# Metrosep C 4 Guard/4.0 (6.1050.500) Metrosep C 4 S-Guard/4.0 (6.1050.510) Metrosep C 4 S-Guard - 50/4.0 (6.1050.530)

The Metrosep C 4 Guard/4.0 contains the Metrosep C 4 column material and is used to protect all Metrosep cation columns that have a substrate based on silica of Particles and contaminations are reliably retained, cons erably prolonging the service life of the analytical sepa tion column. The economical price is an additional pla The Metrosep C 4 Guard/4.0 works based on the «0 Column Guard System» and is screwed directly onto separation column with nearly no dead volume. In co parison with the standard Metrosep C 4 guard column the Metrosep C 4 S-Guard - 50/4.0 exhibits great capacity and therefore an even longer service life.

### **Applications**

Cations

| gel. |                              |                        |
|------|------------------------------|------------------------|
| sid- | <b>Technical information</b> |                        |
| ara- | Substrate                    | Silica gel with        |
| lus. |                              | carboxyl groups        |
| «On  | Column dimensions            | 5 x 4.0 mm, and        |
| the  |                              | 50 x 4.0 mm respective |
| om-  | Column body                  | PEEK                   |
| nns, | Particle size                | 5 μm                   |
| ater | Organic modifier             | 0-100% (no methanol)   |
|      | pH range                     | 2–7                    |
|      | Туре                         | Column                 |



| Ordering information          |            |
|-------------------------------|------------|
| Metrosep C 4 Guard/4.0        | 6.1050.500 |
| Metrosep C 4 S-Guard/4.0      | 6.1050.510 |
| Metrosep C 4 S-Guard - 50/4.0 | 6.1050.530 |
| For use with                  |            |
| Metrosep C 4 - 50/4.0         | 6.1050.450 |
| Metrosep C 4 - 100/4.0        | 6.1050.410 |
| Metrosep C 4 - 150/4.0        | 6.1050.420 |
| Metrosep C 4 - 250/4.0        | 6.1050.430 |
|                               |            |

# Metrosep C 4 Guard/2.0 (6.1050.600) Metrosep C 4 S-Guard/2.0 (6.1050.610)

The Metrosep C 4 Guard/2.0 contains the Metrosep C 4 column material and is used to protect all Metrosep cation columns with 2 mm inner diameter which have a substrate based on silica gel. Particles and contaminations are reliably retained, considerably prolonging the service life of the analytical separation column. The economical price is an additional plus. The Metrosep C 4 Guard/2.0 works based on the «On Column Guard System» and is screwed directly onto the separation column with nearly no dead volume.

### **Applications**

Cations

Туре

### **Technical information**

Substrate
Silica gel with
carboxyl groups

Column dimensions
Column body
PEEK
Particle size
Organic modifier
pH range
Silica gel with
carboxyl
pEEK
PATENTIAL STATE STATE
O-100% (no methanol)
2-7

Column



| Ordering information     |                          |
|--------------------------|--------------------------|
| Metrosep C 4 Guard/2.0   | 6.1050.600               |
| Metrosep C 4 S-Guard/2.0 | 6.1050.610               |
|                          |                          |
| For use with             |                          |
| FOI USE WITH             |                          |
| Metrosep C 4 - 100/2.0   | 6.1050.210               |
|                          | 6.1050.210<br>6.1050.220 |

# Metrosep C 6 Guard/4.0 (6.1051.500) Metrosep C 6 S-Guard/4.0 (6.1051.510)

The Metrosep C 6 Guard/4.0 contains the Metrosep C 6 column material and is used to protect against particles and contamination. This considerably lengthens the service life of the analytical separation column. The economical price is an additional plus. The Metrosep C 6 Guard/4.0 works based on the «On Column Guard System» and is screwed directly onto the separation column with nearly no dead volume.

### Applications

Cations

### **Technical information**

Substrate Silica gel with carboxyl groups
Column dimensions 5 x 4.0 mm

Column body PEEK
Particle size 5 µm

Organic modifier 0–100% (no alcohol)

pH range 2–7
Type Column



| Ordering information     |            |
|--------------------------|------------|
| Metrosep C 6 Guard/4.0   | 6.1051.500 |
| Metrosep C 6 S-Guard/4.0 | 6.1051.510 |
|                          |            |
| For use with             |            |
| Metrosep C 6 - 100/4.0   | 6.1051.410 |
| Metrosep C 6 - 150/4.0   | 6.1051.420 |
| Metrosep C 6 - 250/4.0   | 6.1051.430 |

# Metrosep C 6 Guard/2.0 (6.01051.600)

The Metrosep C 6 Guard/2.0 contains the Metrosep C 6 column material and is used to protect against particles and contamination. This considerably lengthens the service life of the analytical separation column. The economical price is an additional plus. The Metrosep C 6 Guard/2.0 works based on the «On Column Guard System» and is screwed directly onto the separation column with nearly no dead volume.

### **Applications**

Cations

### **Technical information**

pH range 2–7 Type Column



| Ordering information   |             |
|------------------------|-------------|
| Metrosep C 6 Guard/2.0 | 6.01051.600 |
| For use with           |             |
| Metrosep C 6 - 100/2.0 | 6.01051.210 |
| Metrosep C 6 - 150/2.0 | 6.01051.220 |
| Metrosep C 6 - 250/2.0 | 6.01051.230 |

# Metrosep C Supp 1 Guard/4.0 (6.1052.500)

The Metrosep C Supp 1 Guard/4.0 contains the Metrosep C Supp 1 column material and is used to protect Metrosep C Supp 1 cation columns. Particles and contaminations are reliably retained, considerably prolonging the service life of the analytical separation column. The Metrosep C Supp 1 Guard/4.0 also functions according to the "On Column Guard System" and is screwed directly onto the separation column with nearly no dead volume.

## Applications

• Cations

### **Technical information**

Substrate Polyvinyl alcohol with carboxyl groups

Column dimensions 5 x 4.0 mm
Column body PEEK

Particle size  $5 \mu m$  Organic modifier 50 % Acetonitril or

30 % Aceton

pH range 1–12 Type Column



| Ordering information        |            |
|-----------------------------|------------|
| Metrosep C Supp 1 Guard/4.0 | 6.1052.500 |
| For use with                |            |
| Metrosep C Supp 1 - 100/4.0 | 6.1052.410 |
| Metrosep C Supp 1 - 150/4.0 | 6.1052.420 |
| Metrosep C Supp 1 - 250/4.0 | 6.1052.430 |

# Metrosep C Supp 2 Guard/4.0 (6.01053.500)

The Metrosep C Supp 2 Guard/4.0 contains the Metrosep C Supp 2 column material and is used to protect Metrosep C Supp 2 cation columns. Particles and contamination are reliably retained, considerably prolonging the service life of the analytical separation column. The Metrosep C Supp 2 Guard/4.0 also functions according to the "On Column Guard System" and is screwed directly onto the separation column with nearly no dead volume.



# Applications • Cations

| <b>Technical information</b> |                           |
|------------------------------|---------------------------|
| Substrate                    | Poly(styrene-co-          |
|                              | divinylbenzene) with      |
|                              | carboxyl groups           |
| Column dimensions            | 5 x 4.0 mm                |
| Column body                  | PEEK                      |
| Particle size                | 5 μm                      |
| Organic modifier             | Eluent: 0-100% acetone,   |
|                              | acetonitrile (no alcohol) |
|                              | Sample: 0–100% aceton,    |
|                              | acetonitrile, alcohols    |
| pH range                     | Eluent: 0–12              |
|                              | Sample: 0–14              |
| Type                         | Column                    |

# Ordering information Metrosep C Supp 2 Guard/4.0 6.01053.500 For use with 6.01053.410 Metrosep C Supp 2 - 100/4.0 6.01053.410 Metrosep C Supp 2 - 150/4.0 6.01053.420 Metrosep C Supp 2 - 250/4.0 6.01053.430

# Metrosep RP 2 Guard/3.5 (6.1011.030)

The Metrosep RP 2 Guard/3.5 is a guard column for universal use. It reliably protects the analytical separation column against contamination, removing the smallest particles, traces of iron oxide, and bacteria. The Metrosep RP 2 Guard/3.5 helps to reduce costs; its filter disk can be replaced very easily.

### Applications

• Universal guard column

### **Technical information**

Substrate Polymer

Column dimensions 1.0 x 3.5 mm

Column body PEEK

Pore size 0.2 µm

Organic modifier 0–100%

pH range 1–13

Type Column



| Ordering information                             |            |
|--------------------------------------------------|------------|
| Metrosep RP 2 Guard/3.5                          | 6.1011.030 |
| Replacement filters for RP 2 Guard/3.5 (10 pcs.) | 6.1011.130 |
|                                                  |            |
| For use with                                     |            |
| Metrosep A Supp 1 HS - 50/4.6                    | 6.1005.350 |
| Metrosep A Supp 3 - 250/4.6                      | 6.1005.320 |
| Hamilton PRP-X300 - 250/4.6                      | 6.1005.030 |
| Hamilton RCX-30 - 250/4.6                        | 6.1018.000 |
| Metrosep Amino Acids 1 - 100/4.0                 | 6.4001.410 |

# Metrosep RP 3 Guard HC/4.0 (6.1011.040)

The Metrosep RP 3 Guard HC/4.0 is a guard column for universal use. It reliably protects the analytical separation column against contamination, securely removing lipophilic organic contamination, the smallest particles, traces of iron oxide and bacteria. The guard column is based on a polymer material and thanks to its larger pack volume, has a significantly higher capacity that the Metrosep RP 2 Guard/3.5. It can be used throughout the entire pH range.

### Applications

Substrate

Type

• Universal guard column

### **Technical information**

Poly(styrene-co-

divinylbenzene)

Column dimensions 5 x 4.0 mm Column body PEEK

0-100%

Organic modifier pH range 1-14

Column



### **Ordering information** Metrosep RP 3 Guard HC/4.0 6.1011.040 For use with Metrosep A Supp 1 HS - 50/4.6 6.1005.350 Metrosep A Supp 3 - 250/4.6 6.1005.320 Hamilton PRP-X300 - 250/4.6 6.1005.030 Hamilton RCX-30 - 250/4.6 6.1018.000 6.4001.410 Metrosep Amino Acids 1 - 100/4.0

# MetroSil RP 3 Guard/4.0 (6.01070.500)

The MetroSil RP 3 Guard/4.0 is used to protect the MetroSil RP 3 - 150/4.0 against contamination from particles and bacteria.

### **Applications**

Organic substances

### **Technical information**

Substrate Silica gel C<sub>18</sub> 14 x 4.0 mm Column dimensions

Stainless steel Column body Particle size 5 µm

Organic modifier

0-100%

pH range

2-9

Cartridge Type



| Ordering information                         |             |
|----------------------------------------------|-------------|
| MetroSil RP 3 Guard/4.0                      | 6.01070.500 |
| Cartridge holder for MetroSil RP 3 Guard/4.0 | 6.02821.010 |
|                                              |             |
| For use with                                 |             |
| MetroSil RP 3 - 150/4.0                      | 6.01070.420 |
|                                              |             |

# Metrosep BP 1 Guard/2.0 (6.1015.100)

The Metrosep BP 1 Guard/2.0 is used to generate a sufficiently high working pressure in the flow path of post-column reagents. They are used in combination with a high-pressure pump for conveying the post-column reagent in the Professional Reactor.

### Applications

• Backpressure column

### **Technical information**

Substrate Diamond

Column dimensions 50 x 2.0 mm

Column body PEEK

Particle size 6–10 µm

Organic modifier 0–100%

Type Column



### Ordering information

Metrosep BP 1 Guard/2.0

6.1015.100





Preconcentration columns

# Metrosep A PCC 2/4.0 (6.1006.330), Metrosep A PCC 2 HC/4.0 (6.1006.340), and Metrosep A PCC 2 VHC/4.0 (6.1006.350)

The Metrosep A PCC 2/4.0 is used for the preconcentration of anions from small sample volumes. The small dead volume of the column guarantees an excellent peak shape.

The Metrosep A PCC 2 HC/4.0 and the Metrosep A PCC 2 VHC/4.0, on the other hand, are high-capacity preconcentration columns for anions. They are used primarily where large sample volumes with very low anion concentrations must be preconcentrated. The high capacity prevents premature elution of the anions by the matrix itself (in most cases water). Reliable determinations can now be made using these high-capacity columns. All preconcentration columns are made of PEEK.



• Preconcentration of anions

| Technical information |                                         |
|-----------------------|-----------------------------------------|
| Substrate             | Polymethacrylate with qua-              |
|                       | ternary ammonium groups                 |
| Column dimensions     | 6.1006.330: 1.0 x 4.0 mm                |
|                       | 6.1006.340: 13.0 x 4.0 mm               |
|                       | 6.1006.350: 30.0 x 4.0 mm               |
| Column body           | PEEK                                    |
| Maximum flow          | 5.0 mL/min                              |
| Maximum pressure      | 20 MPa                                  |
| Particle size         | 65 µm                                   |
| Organic modifier      | Eluent: 0–10% (acetone,                 |
|                       | acetonitrile, methanol,                 |
|                       | isopropanol)                            |
|                       | Sample: 0–100%                          |
|                       | (acetone, acetonitrile,                 |
|                       | methanol, isopropanol)                  |
| pH range              | 2–13                                    |
| Туре                  | Column                                  |
| Capacity              | 6.1006.330: 0.5 µmol (Cl <sup>-</sup> ) |

6.1006.340: 5 µmol (Cl<sup>-</sup>)

6.1006.350: 10 μmol (Cl<sup>-</sup>)



### Care Storage In the eluent

| Ordering information     |            |
|--------------------------|------------|
| Metrosep A PCC 2/4.0     | 6.1006.330 |
| Metrosep A PCC 2 HC/4.0  | 6.1006.340 |
| Metrosen A PCC 2 VHC/4 0 | 6 1006 350 |

# Metrosep C PCC 1/4.0 (6.1010.300), Metrosep C PCC 1 HC/4.0 (6.1010.310), and Metrosep C PCC 1 VHC/4.0 (6.1010.320)

The Metrosep C PCC 1/4.0 in the various versions are suitable for the preconcentration of monovalent and divalent cations. They are used primarily where large sample volumes with very low cation concentrations must be preconcentrated. In addition, they fulfill the function of a trap column when working with matrix elimination, i.e. the cations to be determined are held back and allow the removal of the disruptive matrix before the sample is fed to the IC system.

The greater the capacity of the column (in the first approximation, this is proportional to the length of the packing bed) the larger the sample volume which can be preconcentrated. This allows detection limits into the lower ppt range. On the other hand, the packing bed increases the dead volume of the preconcentration column; with increasing size the injection peak in the chromatogram increases in peak area. Three different capacities provide the needed flexibility for all preconcentration tasks.

The preconcentration columns are distinguished by very low noise and very low backpressure. They are suitable for preconcentration using a peristaltic pump or Metrohm Dosino technology.

### **Applications**

• Preconcentration of cations

| Technical information    |                                                                                                              |
|--------------------------|--------------------------------------------------------------------------------------------------------------|
| Substrate                | Polymethacrylate                                                                                             |
|                          | with carboxyl groups                                                                                         |
| Column dimensions        | 6.1010.300: 8.5 x 4.0 mm                                                                                     |
|                          | 6.1010.310: 16.5 x 4.0 mm                                                                                    |
|                          | 6.1010.320: 30.0 x 4.0 mm                                                                                    |
| Column body              | PEEK                                                                                                         |
| Maximum pressure         | 15 MPa                                                                                                       |
| Particle size            | 35 µm                                                                                                        |
| Organic modifier         | 0–20% methanol, ethanol,                                                                                     |
|                          | isopropanol or acetonitrile                                                                                  |
| pH range                 | 1–14                                                                                                         |
| Туре                     | Column                                                                                                       |
| Preconcentration volume* | 6.1010.300: 20 mL                                                                                            |
|                          | 6.1010.310: 60 mL                                                                                            |
|                          | 6.1010.320: 90 mL                                                                                            |
|                          | Substrate  Column dimensions  Column body  Maximum pressure  Particle size  Organic modifier  pH range  Type |

\* A solution was preconcentrated with Li<sup>+</sup> = 2  $\mu$ g/L, Na<sup>+</sup>, NH<sub>4</sub><sup>+</sup> = 10  $\mu$ g/L and K<sup>+</sup> = 20  $\mu$ g/L. The maximum preconcentration volume is determined by the fact that the peak area of the lithium does not continue to increase. This means that at greater volumes the lithium is already eluting again from the column



Care
Storage
In the eluent

| 6.1010.300 |
|------------|
| 6.1010.310 |
| 6.1010.320 |
|            |

# Metrosep Chel PCC 1 VHC/4.0 (6.01010.350)

The Metrosep Chel PCC 1 VHC/4.0 is a preconcentration column for the preconcentration of all kinds of cations. Due to its chelating exchanger group, it is particularly well suited for the preconcentration of polyvalent cations. Earthalkaline metals and transition metals are retained much stronger on the preconcentration column than the alkaline metals. Using matrix elimination, it is possible to remove the disturbing monovalent cations from the preconcentration column prior to injection onto the separation column.

The chelating exchange group allows the determination of transition metals in the ppb range in matrices with high salt contents.

### Applications

• Preconcentration of transition metal ions and polyvalent cations.

### **Technical information**

Substrate Poly(styrene-co-

divinylbenzene) with

chelating exchanger groups

Column dimensions 30 x 4.0 mm
Column body PEEK

Maximum pressure 20 MPa
Particle size 30 µm

Maximum flow 2.0 mL/min
Organic modifier 0–50% acetonitrile,

acetone, methanol

pH range 1–13 Type Column



### Care

Storage:

In 5 mmol/L nitric acid.

### Ordering information

Metrosep Chel PCC 1 VHC/4.0

6.01010.350





IC trap columns

# Metrosep A Trap 1 - 100/4.0 (6.1014.000)

The Metrosep A Trap 1 - 100/4.0 is a high capacity anion column, which is used to purify the eluent flow. Even reagents of the highest quality, e.g. «ultrapure» or «puriss.» can still contain minimal anionic contaminants. These are reliably held back by the Metrosep A Trap 1 - 100/4.0. This column is primarily used with gradient applications.

### Applications

Substrate

• Purification of the anion eluent flow

### **Technical information**

Poly(styrene-codivinylbenzene) with quaternary ammonium

groups

Column dimensions 100 x 4.0 mm
Column body PEEK
Maximum pressure 25 MPa

Particle size 570 µm
Organic modifier 0–20%
pH range 1–14
Type Column



### **Ordering information**

Metrosep A Trap 1 - 100/4.0 6.1014.000

# Metrosep C Trap 1 - 100/4.0 (6.1015.000)

This is a high capacity cation column, which is used to purify the eluent flow. Even reagents of the highest quality, e.g. «ultrapure» or «puriss.» can still contain minimal cationic contaminants. These are reliably held back by the Metrosep C Trap 1 - 100/4.0.

### **Applications**

• Purification of the cation eluent flow

### **Technical information**

Substrate Poly(styrene-co-

divinylbenzene) with sulfonic acid groups

Column dimensions 100 x 4.0 mm

Column body
PEEK
Maximum pressure
Particle size
Organic modifier
PH range
Type
Column
PEEK
37–74 µm
0–20%
1–14
Type
Column



### **Ordering information**

Metrosep C Trap 1 - 100/4.0 6.1015.000

# Metrosep C Trap 1 - 30/4.0 (6.01015.030)

This is a cation column, which is used to purify the eluent flow. Even reagents of the highest quality, e.g. «ultrapure» or «puriss.» can still contain minimal cationic contaminants. These are reliably held back by the Metrosep C Trap 1 - 30/4.0. The small dimension of the trap column reduces the dead volume of the instrument.

### Applications

Substrate

• Purification of the cation eluent flow

### **Technical information**

Poly(styrene-codivinylbenzene) with

sulfonic acid groups

Column dimensions 30 x 4.0 mm

Column body PEEK Maximum pressure 25 MPa Particle size 37-74 µm

Organic modifier 0-20%

pH range 1-14 Type Column



### **Ordering information**

Metrosep C Trap 1 - 30/4.0 6.01015.030

# Metrosep RP Trap 1 - 50/4.0 (6.1014.100)

The Metrosep RP Trap 1 - 50/4.0 column is used to eliminate organic contaminants from the eluent. The Metrosep RP Trap 1 - 50/4.0 column helps avoid eluentrelated interference at the baseline, especially with gradient systems. Its use is also recommended for the purification of the p-cyanophenol eluent of the Metrosep Dual 4 separation columns.

### Applications

• Purification of the eluent flow

### **Technical information**

Substrate Silica gel Column dimensions 50 x 4.0 mm

PEEK Column body Maximum pressure 25 MPa Particle size 10 µm pH range 1-9 Column



### Care

Type

### Regeneration

- a) Rinse with 10 mL 80% acetonitrile/water at a flow rate of 2.0 mL/min.
- b) Rinse with 20 mL 100% acetonitrile at a flow rate of 2.0 mL/min.
- c) Rinse with 10 mL 80% acetonitrile/water at a flow rate of 2.0 mL/min.

### Note

If the Metrosep RP Trap 1 - 50/4.0 is used with the Metrosep Dual 4 (6.1016.0X0), then it must be rinsed with 40 mL water at a flow rate of 2.0 mL/min after the regeneration.

### Storage

In the eluent

### **Ordering information**

Metrosep RP Trap 1 - 50/4.0 6.1014.100

For use with

Metrosep Dual 4 - 100/4.6 6.1016.030

# Metrosep RP Trap 2 - 100/4.0 (6.1014.150)

The Metrosep RP Trap 2 - 100/4.0 column is used to eliminate organic contaminants from the eluent. The Metrosep RP Trap 2 - 100/4.0 column helps avoid eluent-related interference at the baseline, especially with gradient systems. It is based on a polymer material. Its presence enables the use of the Metrosep RP Trap 2 - 100/4.0 in the acidic as well as in the alkaline pH range.

### **Applications**

pH range

Type

• Elimination of organic contamination from the eluent.

### **Technical information**

Substrate Poly(styrene-co-divinylbenzene)

Column dimensions 100 x 4.0 mm

Column body PEEK

Maximum pressure 25 MPa

1-14

Column



### **Ordering information**

Metrosep RP Trap 2 - 100/4.0 6.1014.150

# Metrosep I Trap 1 - 100/4.0 (6.1014.200)

The Metrosep I Trap 1 - 100/4.0 column is used to eliminate ionic, i.e. cationic and anionic, contaminants from aqueous solutions. Its use is especially recommended for the purification of the transfer water in combination with «MISP» (Metrohm Inline Sample Preparation). Using the Metrosep I Trap 1 - 100/4.0 column can significantly reduce the influence of the transfer water on the system blank.

### **Applications**

• For the elimination of traces of anionic and cationic contaminants from ultrapure water

### **Technical information**

Substrate Poly(styrene-codivinylbenzene) with anionic and cationic ion exchangers Column dimensions 100 x 4.0 mm PEEK Column body Maximum pressure 25 MPa Particle size 300-840 µm Organic modifier 0-100% pH range 0-14 Column Type



### Ordering information

Metrosep I Trap 1 - 100/4.0 6.1014.200

# Metrosep BO<sub>3</sub><sup>3-</sup> Trap 1 - 100/4.0 (6.1015.200)

Trap column for the removal of borate contaminants from the eluent. The Metrosep BO<sub>3</sub> Trap 1 - 100/4.0 is mainly used in carbohydrate analysis with hydroxide eluents. The removal of borate from the eluent improves the peak shape of sorbitol.

### **Applications**

• Elimination of borate traces from hydroxide eluents.

### **Technical information**

Substrate Poly(styrene-codivinylbenzene) Column dimensions 100 x 4.0 mm Column body PEEK Maximum pressure 25 MPa 0-14 pH range Column



Rinse the column with hydroxide eluent for 90 min

Rinse the column with the following solutions in succession in the direction against the flow:

- during 30 min with 0.1 mol/L hydrochloric acid at a
- during 30 min with 1 mol/L sodium chloride solution at a flow rate of 0.3 mL/min
- during 30 min with ultrapure water at a flow rate of
- during 90 min with hydroxide eluent at a flow rate of maximum 0.5 mL/min

### Storage

in ultrapure water

### **Ordering information**

Metrosep BO<sub>3</sub><sup>3-</sup>Trap 1 - 100/4.0 6.1015.200

# Metrosep CO<sub>3</sub><sup>2-</sup> Trap 1 - 100/4.0 (6.1015.300)

Trap column for the removal of carbonate traces in hydroxide eluents. The Metrosep CO<sub>3</sub><sup>2-</sup> Trap 1 - 100/4.0 is used in carbohydrate analysis with hydroxide eluents.

### **Applications**

• Elimination of carbonate contamination from hydroxide eluents

### **Technical information**

Substrate Poly(styrene-codivinylbenzene) Column dimensions 100 x 4.0 mm

PEEK Column body 25 MPa Maximum pressure 0-14 pH range Column



### Ordering information

Metrosep CO<sub>3</sub><sup>2-</sup>Trap 1 - 100/4.0

6.1015.300





IC sample-preparation cartridges

| IC-RP sample-preparation cartridge (6.1012.X00) |                       |                                                                |
|-------------------------------------------------|-----------------------|----------------------------------------------------------------|
| Material                                        | RP                    |                                                                |
| Application                                     | For the non-polar sol | id-phase extraction. The cartridge removes organic substances. |
| Quantity                                        | 50                    | 10                                                             |
| Bed volume                                      | 0.5 mL                | 0.5 mL                                                         |
| Connection                                      | Luer                  | Luer                                                           |
| Order number                                    | 6.1012.000            | 6.1012.100                                                     |

| IC-H sample-preparation cartridge (6.1012.X10) |                            |                               |                                  |
|------------------------------------------------|----------------------------|-------------------------------|----------------------------------|
| Material                                       | Cation exchanger in        | Cation exchanger in acid form |                                  |
| Application                                    | For the elimination of alk | •                             | rtridge can also be used for the |
| Quantity                                       | 50                         | 10                            | 25                               |
| Bed volume                                     | 0.5 mL                     | 0.5 mL                        | 1.5 mL                           |
| Capacity                                       | 0.8 mmol                   | 0.8 mmol                      | 2.0 mmol                         |
| Connection                                     | Luer                       | Luer                          | Luer                             |
| Order number                                   | 6.1012.010                 | 6.1012.110                    | 6.1012.210                       |

| IC-Ag sample-preparation cartridge (6.1012.X20) |                                 |            |            |
|-------------------------------------------------|---------------------------------|------------|------------|
| Material                                        | Cation exchanger in silver form |            |            |
| Application                                     | For the removal of halides.     |            |            |
| Quantity                                        | 50                              | 10         | 25         |
| Bed volume                                      | 0.5 mL                          | 0.5 mL     | 1.5 mL     |
| Capacity                                        | 0.8 mmol                        | 0.8 mmol   | 2.0 mmol   |
| Connection                                      | Luer                            | Luer       | Luer       |
| Order number                                    | 6.1012.020                      | 6.1012.120 | 6.1012.220 |

| IC-OH sample-preparation cartridge (6.1012.X30) |                                                     |            |
|-------------------------------------------------|-----------------------------------------------------|------------|
| Material                                        | Anion exchanger in hydroxide form                   |            |
| Application                                     | For the neutralization of extremely acidic samples. |            |
| Quantity                                        | 50                                                  | 10         |
| Bed volume                                      | 0.5 mL                                              | 0.5 mL     |
| Capacity                                        | 0.6 mmol                                            | 0.6 mmol   |
| Connection                                      | Luer                                                | Luer       |
| Order number                                    | 6.1012.030                                          | 6.1012.130 |

| IC-Na sample-preparation cartridge (6.1012.X40) |                                 |  |
|-------------------------------------------------|---------------------------------|--|
| Material                                        | Cation exchanger in sodium form |  |
| Application                                     | For the elimination of cations. |  |
| Quantity                                        | 50                              |  |
| Bed volume                                      | 0.5 mL                          |  |
| Capacity                                        | 0.8 mmol                        |  |
| Connection                                      | Luer                            |  |
| Order number                                    | 6.1012.040                      |  |

| IC-C18 sample-preparation cartridge (6.1012.X50)                                    |  |  |
|-------------------------------------------------------------------------------------|--|--|
| C18                                                                                 |  |  |
| For the removal of polar substances; not suitable for F <sup>-</sup> determination. |  |  |
| 50                                                                                  |  |  |
| 0.5 mL                                                                              |  |  |
| Luer                                                                                |  |  |
| 6.1012.050                                                                          |  |  |
|                                                                                     |  |  |



# IC accessory parts

# PEEK inline filter (6.2821.120)

The inline filter in the PEEK housing not only removes all particles of mineral origin, but also algae and bacteria. The exclusion diameter of 2  $\mu$ m ensures that no contamination can damage the column or the suppressor.



### Ordering information

PEEK inline filter 6.2821.120
Replacement filters (10 pcs.) 6.2821.130

# Coupling safety olive with PEEK inline filter (6.2744.180)

The coupling safety olive with PEEK inline filter connects the tube of the peristaltic pump with the following system, e.g. with the suppressor or with the post-column reactor (PCR). On the one hand, this prevents the tube of the peristaltic pump from detaching unintentionally, while on the other hand all particles with a diameter of greater than 2  $\mu m$  are effectively removed from the flow of liquid.



### **Ordering information**

Coupling safety olive with PEEK inline filter Replacement filters (10 pcs.)

6.2744.180 6.2821.130

www.metrohm.com



