
VA Application Note V-198

Aluminum in drinking water by adsorptive stripping voltammetry using alizarin red S (DASA) as complexing agent

Aluminum can be determined in drinking water by adsorptive stripping voltammetry at the HMDE using alizarin red S (DASA) as complexing agent. The method is linear up to 35 μ g/L. The detection limit for this method is β (Al) = 1 μ g/L, the limit of quantification is β (Al) = 3 μ g/L. The sensitivity of the method cannot be increased by deposition.

Results

Al in drinking water
4.0 µg/L

Method description

Sample

• Tap water

Instrument

797 VA Computrace

Electrodes

Working electrode (WE)	6.1246.020 MME (Multi- Mode Electrode) with 6.1226.050 silanized glass capillary
Reference electrode (RE)	6.0728.000 reference electrode (Ag/AgCl/ c(KCl) = 3 mol/L) with 6.1245.000 glass electrolyte vessel filled with intermediate electrolyte c(KCl) = 3 mol/L
Auxiliary electrode (AE)	6.0343.000 platinum electrode

Reagents

HNO ₃	Nitric acid, suprapur, w(HNO ₃) = 65 %
Ca solution	Commercial Ca standard stock solution, $\beta(Ca) = 1$ g/L
NH ₄ Cl	Ammonium chloride, supra- pur, NH ₄ Cl
NaOH	Sodium hydroxide solution, suprapur, w(NaOH) = 30 %
KBrO3	Potassium bromate, analytical grade
DASA	Alizarin red S sodium salt (DASA, 3,4-Dihydroxy-9,10- dioxo-2-anthracenesulfonic acid sodium salt, C ₁₄ H ₇ NaO ₇ S, CAS 130-22-3)
Al standard stock	$\beta(Al^{3+}) = 1 g/L$

solution

Solutions

Ammonia buffer	$c(NH_4Cl) = 1.0 \text{ mol/L, adjusted to pH= } 9.2 \text{ with } NaOH$
KBrO₃ solution	$c(KBrO_3) = 0.1 \text{ mol/L}$
DASA solution	c(DASA) = 5.26 mmol/L in water
Al standard addition solution	$\beta(Al^{3+}) = 1$ mg/L, acidified with 1 mL/L HNO ₃

Analysis

Measuring solution	10 mL sample
	+ 0.1 mL Ca solution
	+ 1 mL ammonia buffer
	+ 1 mL KBrO₃ solution
	+ 0.1 mL DASA solution

Parameters

Working electrode	HMDE
Drop size	4
Stirrer speed	2000 rpm
Mode	DP
Initial purge time	300 s
Addition purge time	120 s
Deposition potential	0 V
Deposition time	0 s
Equilibration time	5 s
Pulse amplitude	0.05 V
Start potential	-0.9 V
End potential	-1.2 V
Voltage step	0.005 V
Voltage step time	0.2 s
Sweep rate	0.025 V/s
Peak potential Al	-1.07 V

