

VA Application Note No. V - 181

The concentration of Cr(VI) in cement is determined in Summary: tartrate electrolyte after acid extraction of the sample.

Sample: cement Sample preparation: 10 g cement sample is weighed into a beaker and elutriated with 50 mL nictric acid ($c(HNO_3) = 1 \text{ mmol/L}$, pH = 3). The mixture is stirred for 1 h and then filtrated through a filter paper. The residue in the filter is rinsed twice with nitric acid. The filtrate is transferred into a 100 mL volumetric flask and made up to the mark with

ultrapure water.

Analy	eie,	Ωf	Cr	(VI)
Allal	7313	UI	UI	V I)

Ammonium tartrate $c((NH_4)_2C_4H_4O_6) = 0.1 \text{ mol/L}$

solution

Parameters

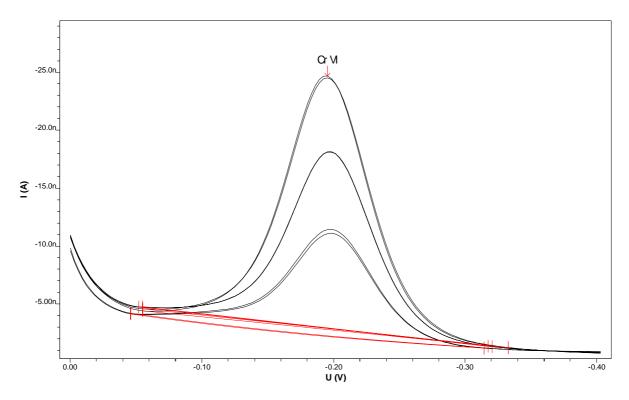
pH 9 adjusted with NH₃

Measuring solution 10 mL ammonium tartrate solution

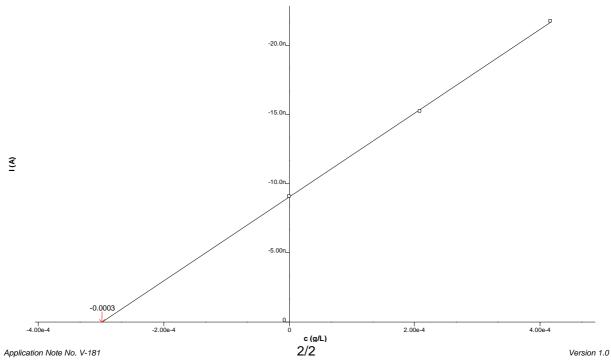
+ 2 mL extraction solution

Working electrode (WE) **MME** (Multi Mode Electrode) 6.1246.020

Auxiliary electrode (AE) 6.0343.000


Reference electrode (RE) Reference system: Aq/AqCl/KCl (3 mol/L) 6.0728.020

,	Intermediate electrolyte:	· ,
	Working electrode	HMDE
	Stirrer speed	2000 rpm
	Mode	DP
	Purge time	300 s
	Deposition potential	0
	Deposition time	0
	Equilibration time	5 s
	Pulse amplitude	0.05 V
	Start potential	0 V
	End potential	-0.4 V
	Voltage step	0.003 V
	Voltage step time	0.3 s
	Sweep rate	0.01 V/s
	Peak potential Cr(VI)	-0.2 V



Results:	Cr(VI)	
	17.9 mg/kg	

Determination of Cr(VI)

Cr VI c = 17.903 mg/kg +/- 0.296 mg/kg (1.66%)

