

VA Application Note No. V - 177

Title:	Total iron in a chromium bath	
	(triethanolamine-bromate-method)	

Summary:

The concentration of Fe(total) is determined by polarography in alkaline electrolyte containing triethanolamine (TEA) and KBrO₃. All reagents typically contain Fe impurities. Therefore a subtraction of the reagent blank is recommended.

Sample: Cr(III/VI) electroplating bath

Sample preparation: Reduction of Cr(VI)

250 μ L Cr bath is filled up to 25 mL with c(oxalic acid) = 0.5 mol/L. The solution is gently heated while stirring until

the color changes.

Ana	lvsis	of	Fe	total)

Supporting electrolyte c(NaOH) = 0.3 mol/L

 $c(KBrO_3) = 0.1 \text{ mol/L}$ c(TEA) = 0.05 mol/L

TEA: triehanolamine

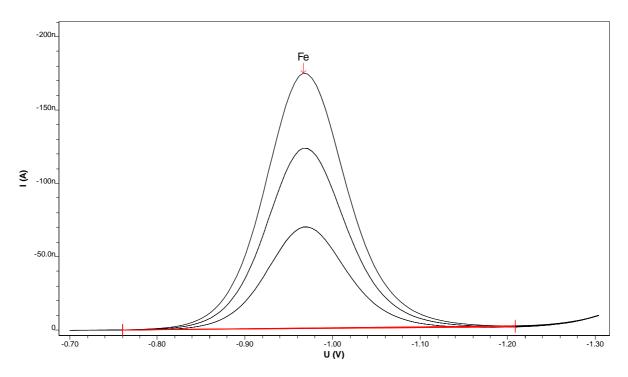
Measuring solution 15 mL H₂O

+ 5 mL supporting electrolyte + 50 µL reduced Cr bath

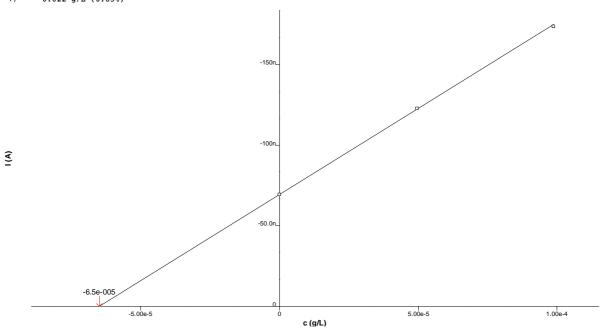
Working electrode (WE) MME (Multi Mode Electrode) 6.1246.020

Auxiliary electrode (AE) Pt 6.0343.000

Reference electrode (RE) Reference system: Ag/AgCl/KCl (3 mol/L) 6.0728.020 Intermediate electrolyte: c(KCl) = 3 mol/L 6.1245.010


Parameters

Working electrode	DME			
Stirrer speed	2000 rpm			
Mode	DP			
Purge time	300 s			
Equilibration time	5 s			
Pulse amplitude	0.05 V			
Start potential	-0.7 V			
End potential	-1.3 V			
Voltage step	0.005 V			
Voltage step time	0.8 s			
Sweep rate	0.0062 V/s			
Peak potential Fe	-0.95 V			



Results:	Fe (blank subtracted)	
	1.5 g/L	

Determination of Fe(total)

Fe c = 2.604 g/L +/- 0.022 g/L (0.83%)

