
Titration Application Note T-174

Determination of hydrolyzable chloride content in liquid epoxy resins according to ASTM D1726 (method B)

The hydrolyzable chloride content of epoxy resins is an important variable in determining their reactivity and the properties of coating made from them.

With the OMNIS system a fast and accurate determination by a potentiometric titration using the dAg ring electrode and silver nitrate as titrant is realized.

Method description

Samples

Liquid epoxy resin

Sample preparation

No sample preparation is required.

Configuration

	OMNIS Advanced Titrator with stirrer	2.1001.0220
	OMNIS Dosing Module, 2x	2.1003.0010
	Cable MDL PL/SO 1 m, 2x	6.02102.020
	OMNIS 20 mL cylinder unit, (titrant)	6.03001.220
	OMNIS 50 mL cylinder unit, 2x (KOH, glacial acetic acid)	6.03001.250
	Digital measuring module	6.02100.010
	Stirring bar / 30 mm, 5x	6.1903.060
	Heating plate with stirrer	-
	Reflux condenser	-
	Erlenmeyer flask, glass 250 mL	-
	Electrode cable plug-in head Q / plug P, 0.55 m	6.02104.300
	OMNIS Stand-alone license (including one instrument license)	6.06003.010
	dAg ring electrode	6.00402.300

Solutions

Titrant	$c(AgNO_3) = 0.0025 \text{ mol/L in}$ methanol
Potassium hydroxide	c(KOH) = 0.1 mol/L in methanol
Acetone	w(acetone) ≥ 99.5%
Toluene	w(toluene) ≥ 99.3%
Glacial acetic acid	$W(C_2H_4O_2) \ge 99.0\%$

Analysis

Blank

The blank is determined the same way as the sample, just without sample.

Sample

2-3 g sample is pipetted into an Erlenmeyer flask. 50 mL c(KOH) = 0.1 mol/L in methanol, 20 mL toluene and 20 mL acetone are added to the sample and the flask is connected to a reflux condenser. The solution is refluxed for 15 ± 1 min at 120 °C. Afterwards, the Erlenmeyer flask with condenser was removed from the heating plate and the solution was allowed to cool down to room temperature. The condenser is rinsed with 20 mL acetone and then the flask is removed. Afterwards, the solution is diluted with acetone to about 125 mL. While stirring, 50 mL glacial acetic acid is added and the solution is then titrated with $c(AgNO_3) = 0.0025$ mol/L until after the equivalence point using the dAg ring electrode.

Parameters

Mode	DET U
Pause	30 s
Start volume	0 mL
Stirring rate	6
Min. increment	10 μL
Max. increment	Off
Signal drift	20 mV/min
Max. waiting time	38 s
Min. waiting time	5 s
Dosing rate	Maximum
Stop volume	20 mL
Stop EP	1
Volume after EP	8.0 mL
EP criterion	30 mV
EP recognition	Greatest

Results

Hydrolyzable chloride content / (ppm) (n = 5)	s(rel) / %
225	0.81

www.metrohm.com

