Ti Application Note No. T-72

Title: \quad Reducing sugars in wine and sweets

Summary:	Determination of reducing sugars in wine and sweets according to Fehling's method by potentiometric/iodometric titration using the Pt Titrode.

Sample: \quad Red or white wine, sweets

Sample

Preparation: \quad None for wine. For sweets dissolve one piece (approx. 4 g) in dist. water, make up to 100 mL and mix.

Instruments and

Accessories: $\quad 702,716,736,751$ or 785 Titrino or 726 or 796 Titroprocessor, 6.0431.100 Pt Titrode

Analysis:	Remarks:		
	Experiments have shown that the reaction follows a logarithmic function. In order to remain within the linear range (where the titrant consumption is proportional to the glucose content), the sample to be titrated should contain $20 \ldots 40 \mathrm{mg}$ glucose. Thus, depending on the expected glucose content, the following sample volumes should be used for the titration:		
	Glucose content / g/L	Sample volume / mL	Factor
	2	15	0.1333
	5	6	0.3333
	$10 . . .20$	2	1
	$25 . .30$	1	2
	Titer determination:		
	Glucose standard solutions with a concentration of $10 \mathrm{~g} / \mathrm{L}$ and $20 \mathrm{~g} / \mathrm{L}$ are prepared in dist. water. 2.0 mL of these standard solutions are then titrated as described below.		
	g / L reducing sugars $=(\mathrm{C} 01-\mathrm{EP} 1) * \mathrm{C} 02$		
	EP1 = titrant consumption for the glucose standard in mL		
	C01 = titrant consumption for the blank in mL		
	$\mathrm{C} 02=1.8$ (calculation factor for invert sugar)		

The obtained results are used to calculate the titer of the thiosulfate titrant, which is stored as C30:
titer $=$ theoretical glucose concentration / calculated sugar concentration

Example:

$10 \mathrm{~g} / \mathrm{L} / 11.4 \mathrm{~g} / \mathrm{L}=0.8772$
$20 \mathrm{~g} / \mathrm{L} / 21.8 \mathrm{~g} / \mathrm{L}=0.9174$

$$
\begin{aligned}
\text { titer } & =(0.8772+0.9174) / 2=0.8973 \pm 0.028 \\
& =0.8973 \pm 3.2 \%
\end{aligned}
$$

Sample analysis:

Pipet $1 \ldots 15 \mathrm{~mL}$ sample (see table above) into a beaker. Add 10.00 mL acidic $\mathrm{c}\left(\mathrm{CuSO}_{4}\right)=0.168 \mathrm{~mol} / \mathrm{L}$ and 5 mL alkaline potassium sodium tartrate solution ($0.89 \mathrm{~mol} / \mathrm{L}$), heat up and boil for exactly 30 s . Cool down rapidly with tap water. Add $10 \mathrm{~mL} w(\mathrm{KI})=$ $15 \%, 10 \mathrm{~mL} w\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=16 \%$ as well as 10 mL dist. water, then titrate with c(thiosulfate) $=0.1 \mathrm{~mol} / \mathrm{L}$.
Carry out a blank determination using 10 mL dist. water instead of the sample. Store the titrant consumption for the blank as C01.

Calculations: Analysis of wine:
 g / L reducing sugars $=(\mathrm{C} 01-\mathrm{EP} 1)$ * C02 * factor * C 30

Analysis of sweets:

\% reducing sugars

$$
=(C 01-E P 1) * C 03 * C 04 * C 05 * \text { factor * C30 / C00 }
$$

EP1 = titrant consumption for the sample in mL
C00 = approx. 4 (sample weight in g)
C01 = titrant consumption for the blank in mL
C02 = 1.8 (calculation factor for invert sugar)
C03 $=0.1$ (concentration of the titrant in $\mathrm{mol} / \mathrm{L}$)
C04 = 36 [= $180 / 5=\mathrm{M}$ (glucose) in $\mathrm{g} / \mathrm{mol} / 5$]
C05 = 5 [= 50 (dilution factor) * 0.1 (conversion factor for \%)]
C30 $=$ titer of the titrant (see above)

Results:	Red wine:	AVG(3) $=4.05 \pm 0.002 \mathrm{~g} / \mathrm{L}$ reducing sugars
	Sweets:	AVG $(3)=19.52 \pm 0.05 \%$ reducing sugars

