

Ti Application Note No. T-69

Title:	Iron and nickel i	n binary mixtures

Summary: Determination of iron and nickel in binary mixtures by potentionetric titration with EDTA at different pH values using the Cu ISE.

Sample: Solutions containing Fe³⁺ and Ni²⁺ or dissolved alloys

Sample

Preparation: none

Instruments and

Accessories: 702, 716, 736, 751 or 785 Titrino or 726 Titroprocessor,

6.0502.140 Cu ISE, 6.0726.100 Ag/AgCl reference electrode

Analysis: a) Determination of nickel:

Pipette, e.g., 3.0 mL sample solution into a beaker. Add 20 mL dist. water, 10 mL NH_3/NH_4Cl buffer pH = 10 and 1 mL CuEDTA complex solution (0.05 mol/L). Stir for 25 s, then titrate with c(EDTA) = 0.1 mol/L.

b) Determination of iron:

Pipette, e.g., 3.0 mL sample solution into a beaker. Add 20 mL dist. water, 10 mL acetate buffer pH = 4.7 and 10.0 mL c(EDTA) = 0.1 mol/L. Stir for 25 s, then titrate back the EDTA excess with $c(CuSO_4) = 0.1$ mol/L.

Calculation: a)1 mL c(EDTA) = 0.1 mol/L corresponds to 5.869 mg Ni²⁺

 $g/L Ni^{2+} = EP1 * C01 / C00$

EP1 = titrant consumption in mL C00 = 3.0 (sample volume in mL)

C01 = 5.869

b) 1 mL c(CuSO₄) = 0.1 mol/L corresponds to 5.585 mg Fe³⁺

 $g/L Fe^{3+} = (C01 - EP1) * C02 / C00$

EP1 = titrant consumption in mL

C00 = 3.0 (sample volume in mL)

C01 = 10.0 [added volume of $c(CuSO_4) = 0.1$ mol/L in mL]

C02 = 5.585

Results:	$AVG(4) = 9.02 \pm 0.05 \text{ g/L Fe}^{3+}$
	$AVG(4) = 3.41 \pm 0.06 \text{ g/L Ni}^{2+}$

Remarks: In the same way binary mixtures of Fe³⁺/Co²⁺ can be analysed.