
## **Stability Application Note R-017**

# Determination of the oxidation stability of different waxes



Wax has theoretically an unlimited shelf life, however many additives (flavor, softener, etc.) can affect it negatively. Since both synthetic and natural waxes are used in various products, such as cosmetics and foods, expiry dates have to be specified. The oxidation stability can give an approximate indication for the shelf life.

A reproducible and accurate determination of the oxidation stability using the 892 Professional Rancimat can be realized.



# Method description

## Samples

Tea light candle wax without additives

Tea light candle wax with dimethylmyrcetone (tetramethyl acetyloctahydronaphthalenes)

Beeswax

## Sample preparation

For homogeneous wax no sample preparation is required. Otherwise, the wax is previously completely melted in a glass beaker placed in a water bath (at approximately 90 °C).

## Configuration

| 892 Professional Rancimat                                     | 2.892.0010 |
|---------------------------------------------------------------|------------|
| Equipment for the determination of the temperature correction | 6.5616.100 |
| Reaction vessel long for stability measurements               | 6.1429.050 |
| Air tube long for biodiesel measurements                      | 6.2418.130 |
| Clamp for temperature sensor, 4x                              | 6.2042.040 |
| Wash glass, 4x                                                | 6.2405.030 |
| Thread for wash glass, 4x                                     | 4.647.0471 |
| Sealing ring, 4x                                              | A.254.0103 |
| FEP tubing M6, 18 cm, 4x                                      | 6.1805.050 |
| FEP tubing M6, 25 cm, 4x                                      | 6.1805.080 |
| FEP tube 14.5 cm, 4x                                          | 6.1819.090 |

#### **Analysis**

Before the analysis is started, a temperature correction for each block is performed.

3 g  $\pm$  0.02 g wax is weighed in a reaction vessel. Afterwards the oil trap is inserted between the Rancimat and the reaction vessel and the analysis is started.

#### **Parameters**

| Sample size                                    | $3 \pm 0.02$ g |
|------------------------------------------------|----------------|
| Measuring solution                             | 60 mL          |
| Temperature                                    | 140 °C         |
| Temperature correction                         | auto           |
| Gas flow (air)                                 | 7.0 L/h        |
| Conductivity change                            | 50 μS/cm       |
| Endpoint(s)                                    | yes            |
| Stop once all the criteria have been fulfilled | yes            |

#### Results

| Sample (n = 4)                                      | Mean<br>value / h | s(abs) /<br>h | s(rel) /<br>% |
|-----------------------------------------------------|-------------------|---------------|---------------|
| Tea light candle<br>wax without stated<br>additives | 3.07              | 0.10          | 3.3           |
| Tea light candle<br>wax with<br>dimethylmyrcetone   | 2.20              | 0.13          | 6.1           |
| Beeswax                                             | 23.64             | 0.48          | 2.0           |

lity Application Note on 2, published in Au www.metrohm.com

