
# **Titration Application Note I-018**

# Ammonium in liquid fertilizer

Reliable determination by standard addition with NH<sub>4</sub> - ISE



As nitrogen is essential nutrient for plants, it is an essential constituent of many fertilizers. It is present there in different forms, mainly as ammonium or nitrate. Knowing the nitrogen concentration and the form in which is present helps to select the right fertilizer for the plants. For producers of fertilizers, it is therefore necessary to indicate the concentration of ammonium nitrogen in their product.

This Application Note shows how to determine ammonium in liquid fertilizers by means of a standard addition.



# Method description

## Sample

Liquid fertilizer

#### **Sample preparation**

No sample preparation required.

## Configuration

| 867 pH Module with <i>tiamo</i> <sup>TM</sup> light | 2.867.0210 |
|-----------------------------------------------------|------------|
| 800 Dosino (2x)                                     | 2.800.0010 |
| 802 Stirrer                                         | 2.802.0020 |
| 2 mL ETFE Dosing unit                               | 6.1575.120 |
| 10 mL Dosing unit                                   | 6.3032.210 |
| NH <sub>3</sub> – selective gas membrane electrode  | 6.0506.100 |

#### **Solutions**

| ISA solution<br>c(NaOH) = 10 mol/L | 400 g NaOH is dissolved in approx. 500 mL deion. water containing ice cubes made of deion. water. After dissolution, the solution is transferred into a 1 L volumetric flask and filled up to the mark with deion. water.                  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EDTA solution<br>c(EDTA) = 1 mol/L | 29.22 g EDTA is suspended in 50 mL deion. water and c(NaOH) = 10 mol/L is added dropwise until everything is dissolved. Afterwards the solution is transferred into a 100 mL volumetric flask and filled up to the mark with deion. water. |

#### Standard

| Titrant / Standard $c(NH_4) = 10.000 \text{ g/L} \sim$ | 29.7 g NH <sub>4</sub> Cl is weighed into a 1 L volumetric flask. |
|--------------------------------------------------------|-------------------------------------------------------------------|
| 10000 ppm                                              | dissolved and filled up to the mark with deion. water.            |

## **Analysis**

0.1 mL fertilizer, 49.9 mL deion water as well as 1 mL c(EDTA) = 1 mol/L are pipetted into a 100 mL beaker and 1 mL c(NaOH) = 10 mol/L is added. The analysis by standard addition with  $\beta$ (NH<sub>4</sub>) = 10000 mg/L is started directly after the addition of the c(NaOH) = 10 mol/L.

#### **Parameters**

| Mode                      | STDADD auto |
|---------------------------|-------------|
| Stirring rate             | 6           |
| Number of additions       | 4           |
| Volume auxiliary solution | 51.9 mL     |
| Stop volume               | 10 mL       |
| Dosing rate               | fast        |
| Delta U                   | 12 mV       |
| Signal drift              | 0.5 mV/min  |
| Min. waiting time         | 60 s        |
| Max. waiting time         | 300 s       |
| Measuring interval        | 2.0 s       |

#### Results

Mean results (n = 5)

| w(NH <sub>4</sub> ) / % | 2.44  |
|-------------------------|-------|
| s(abs) / %              | 0.011 |
| s(rel) / %              | 0.45  |

www.metrohm.com

