Titration Application Note H–128

Determination of ferrous ion in acidic solutions with permanganate titrant

This Application Note looks at the determination of ferrous ion in acidic solutions by redox titration with a permanganate titrant using thermometric titration.

Method description

Principle

Permanganate ion in strongly acidic solution is a suitable titrant for the direct determination of ferrous ion.

 $MnO_{4}^{-} + 8 H^{+} + 5 e^{-} \leftrightarrow Mn^{2+} + 4 H_{2}O$ [Fe²⁺ \leftrightarrow Fe³⁺ + e⁻] \times 5

5 Fe^{2+} + MnO_4^- + 8 H⁺ \leftrightarrow 5 Fe^{3+} + Mn^{2+} + 4 H₂O

Thus, 1 mol $MnO_4^- \equiv 5$ mol Fe^{2+} . The reaction is strongly exothermic. A disadvantage of permanganate is that solutions have no long-term stability and should be standardized for good accuracy. Solutions should be prepared with freshly produced DI water and stored in brown glass bottles with minimum headspace.

Samples

"Test solution"

Sample preparation

No sample preparation required

Configuration

Basic equipment list for automated titration

814 USB Sample Processor	2.814.0030
859 Titrotherm	2.859.0010
Sample rack 24×75 mL	6.2041.340
Thermoprobe, fluoride resistant	6.9011.040
Titration Head for Titrotherm	6.9914.159
Sample beaker/75 mL	6.1459.400
802 Stirrer	2.802.0010
Stirring propeller (104 mm)	6.1909.020
1 × 800 Dosino	2.800.0010
$1 \times \text{Dosing unit } 10 \text{ mL}$	6.3032.210
tiamo™	6.6056.222

Solutions

Titrant	$c(KMnO_4) = 0.25 mol/L$ potassium permanganate <i>acid:</i> 10% (w/v) H ₂ SO ₄ solution
Acid	10% (w/v) H_2SO_4 solution
Standard solution	$c(Fe^{2+}) = 0.3 \text{ mol/L ferrous}$ ammonium sulfate (FAS), $(NH_4)_2SO_4 \cdot FeSO_4 \cdot 6H_2O$, prepared in 0.1 mol/L H_2SO_4 solution. Prepare

	freshly for each batch of $KMnO_4$ solution to be standardized. Calculate amount of FAS to be weighed, taking into account the stated purity of the reagent. Note: FAS is not a primary standard, but is suitable for standardizing KMnO_4 solutions used for routine analysis.
Test solution"	A test solution of $\approx 1 \text{ g/L}$ Fe ²⁺ was prepared from FAS to simulate a customer solution containing a low level of Fe ²⁺ . This was prepared by weighing approximately 1.77 g FAS into a 250 mL volumetric flask containing 10 mL 10% (w/v) H ₂ SO ₄ and making to volume with DI water.

Analysis

Basic method (for ≈ 1 g/L Fe²⁺ solution):

Pipette a 20 mL aliquot of test solution into a titration vessel, add 10 mL 10% (w/v) H_2SO_4 , and titrate with $c(KMnO_4) = 0.25$ mol/L solution to an exothermic endpoint.

Standardization:

Using a specially constructed **tiamo**TM program, aliquots ranging from 4 to 20 mL in 4 mL increments were dispensed from a Dosino into titration vessels containing 10 mL 10% (w/v) H_2SO_4 and volumes of DI water to give a total volume of approximately 30 mL at the start of the titration. The tiamo program performs the regression analysis and calculates the molarity, titration blank and correlation coefficient of the regression line automatically.

Parameters

Titrant dose rate (mL/min)	4
ERC EP1 (exothermic)	-100
Data smooting ("filter factor")	45
Stirring speed (802 Rod stirrer)	14
Evaluation start (mL)	0.5
Damping until (mL)	0.5

Method description

Calculations

g/L Fe²⁺ = ((EP1 - blank) × C01 × C02 × 5)/C00

EP1 = endpoint in mL

C00 = sample weight in mL

C01 = concentration of permanganate titrant in mol/L

C02 = molecular weight of Fe (55.845 g/mol)

Results

"Test solution" ${\rm Fe}^{2+}$ = 0.99 $\pm~$ 0.00 g/L (theoretical = 1.01 g/L)

Standardization:		
c(KMnO₄)	= 0.2550) mol/L
blank	= 0.043	mL
coefficient of determination,	R^2	= 1.0000

Titration plot

Fig. 1. Titration plot, Fe^{2+} with KMnO₄

