
Titration Application Note H–123 Sodium in instant noodles

This Application Note describes the determination of the total sodium content of instant noodles, which are also called «two minute noodles» in some countries. These products contain considerable amounts of sodium (approximating at least half of the recommended daily dietary intake), so an accurate assessment of the sodium content is important. Argentometric titration of the chloride content (and thereby imputing the sodium content as deriving solely from sodium chloride addition) is inappropriate for accurate analysis, since reference to the nutrition information on the product label shows the following mineral salts to be present as well as sodium chloride:

Food Code no.	Salt	
508	Potassium chloride (titrates argentometrically, would be analyzed falsely as sodium)	
451	Pentasodium triphosphate (not analyzed argentometrically)	
500	Sodium carbonates (not analyzed argentometrically)	
621	Monosodium glutamate (not analyzed argentometrically)	
635	Disodium ribonucleotides (not analyzed argentometrically)	

Method description

Principle

Sodium ion reacts exothermically with aluminium ions in the presence of potassium and fluoride ions to form insoluble NaK_2AIF_6 («elpasolite»). Aluminium must be in the AI^{3+} ionic form.

The reaction may be used for the quantitative determination of total sodium in various foodstuffs. A necessary precondition for accurate analysis is that all sodium must be released for the food matrix. In the case of foods with a high protein content, trichloroacetic acid CCl₃COOH («TCA») has been found to be suitable in denaturing the protein and assisting in complete liberation of the sodium. In this case, the noodles are made with high protein wheat flour.

Sample

Nestlé Maggi «Two minute noodles» snack packs, chicken and beef flavors.

Sample preparation

1. Noodle cake

The entire noodle cake was first weighed, then roughly broken, and ground to the consistency of a coarse flour in a food blender. The ground material was then mixed and "cone and quartered" to take representative samples.

2. Flavor sachets

The entire contents of the flavor sachets were first weighed, then transferred quantitatively to a 500 mL volumetric flask, which was then made to volume with deionized water, and thoroughly mixed. To remove solids which might otherwise block volumetric pipettes used to take aliquots, the flask contents were filtered through a rapid flow qualitative filter paper.

Configuration

Basic equipment list for automated titration

814 USB Sample Processor	2.814.0030
859 Titrotherm	2.859.0010
Sample rack 24×75 mL	6.2041.340
Thermoprobe HF resistant	6.9011.040*
Sample beaker 75 mL	6.1459.400
802 Rod Stirrer	2.802.0010
Stirring propeller 104 mm	6.1909.020
2×800 Dosino	2.800.0010
$1 \times Dosing$ unit 10 mL	6.3032.210
$1 \times ETFE$ cylinder unit 10 mL 1 × Dosing unit 5 mL	6.1566.150 6.3032.150
tiamo™	6.6056.222

* Acidified solutions of fluoride ion are used in this determination.

Additional equipment: Polypropylene or PTFE titration vessels small blender with sealed vessels («rocket blender») Polytron PT 1300 D homogenizer

Solutions

Titrant $c(Al(NO_3)_3) = 0.5 \text{ mol/L}$ aluminium nitrate solution prepared in a solution of $c(KNO_3) = 1.1 \text{ mol/L}$ potassium nitrate $c(NH_4F) = 40\% (w/v)$ ammonium fluoride in deionized water $c(CCI_3COOH) = 30\% (w/v)$ trichloroacetic acid in deionized water («TCA solution») $c(NaCl) = 0.1 \text{ mol/L sodium}$ chloride, for standardization of the $c(Al(NO_3)_3) =$ $0.5 \text{ mol/L aluminium nitrate}$ $c(Cocentrated HCI solution)$		
ammonium fluoride in deionized waterc(CCl_3COOH) = 30% (w/v) trichloroacetic acid in deionized water («TCA solution»)c(NaCl) = 0.1 mol/L sodium chloride, for standardization of the c(Al(NO_3)_3) = 0.5 mol/L aluminium nitrate solutionconcentrated HCl solution	Titrant	aluminium nitrate solution prepared in a solution of c(KNO ₃) = 1.1 mol/L
trichloroacetic acid in deionized water («TCA solution») $c(NaCl) = 0.1 mol/L sodiumchloride, for standardizationof the c(Al(NO_3)_3) =0.5 mol/L aluminium nitratesolutionconcentrated HCl solution$		ammonium fluoride in
chloride, for standardization of the $c(Al(NO_3)_3) =$ 0.5 mol/L aluminium nitrate solution concentrated HCl solution		trichloroacetic acid in deionized water («TCA
		chloride, for standardization of the $c(Al(NO_3)_3) =$ 0.5 mol/L aluminium nitrate
acetone, commercial grade		concentrated HCl solution
		acetone, commercial grade

Analysis of samples

1. Analysis of noodle cake

Approximately 2.5 g of ground noodle cake is weighed into a titration vessel and 10 mL trichloroacetic acid solution added. After allowing the contents to stand for a few minutes, 10 mL acetone is added, and the suspension homogenized for 60 seconds at 20,000 rpm with a Polytron PT 1300 D homogenizer. The acetone is added to prevent swelling of the starch, which would otherwise produce a material not able to be titrated. Wash the shaft of the Polytron with approx. 5 mL 1:1 acetone/water into the titration vessel.

The suspension is then titrated with standardized $c(Al(NO_3)_3) = 0.5 \text{ mol/L}$ solution after automated addition of 5 mL $c(NH_4F) = 40\%$ (w/v) solution.

Due to the heterogeneity of the material, it is recommended that the mean of triplicate analysis is taken.

2. Analysis of flavor sachet

A 20 mL aliquot of filtered flavor solution is pipetted into a titration vessel and 2 mL of concentrated HCl and 5 mL deionized water added.

The suspension is then titrated with standardized $c(Al(NO_3)_3) = 0.5 \text{ mol/L}$ solution after automated addition of 5 mL $c(NH_4F) = 40\%$ (w/v) solution.

Method description

Initial determination of reagent blank

These determinations are only required for the initial setup for analysis of this type of food product.

1. Noodle cake

Seven separate titrations are performed, employing accurately weighed sample masses ranging from approx. 5 to 3 g in roughly equal increments.

2. Flavor sachets

Aliquots of 5, 10, 15, and 20 mL of prepared filtrate are titrated. Separate determinations are made for both the beef and chicken flavor sachets.

In each case, a regression analysis is performed on the results, with the x-axis denoting sample mass in g, and y-axis titration endpoint volumes in mL. The higher number of titrations required for analysis of the noodle cake is due to the heterogeneity of this material.

Standardization of titrant

Aliquots of 5, 10, 15, 20, and 25 mL of 0.1 mol/L c(NaCl) are pipetted into titration vessels, and diluted with deionized water to bring the volume to approx. 25 mL. To each vessel, 1 mL of concentrated HCl is added. The solutions are titrated under the same conditions as for the samples.

A regression analysis is performed, with the amount of NaCl titrated (as mmol) plotted on the x-axis, and the volume of $c(Al(NO_3)_3) = 0.5 \text{ mol/L}$ in mL plotted on the y-axis. The molarity of the Al^{3+} solution is calculated from the reciprocal of the gradient. A dedicated *tiamo*TM program has been created to automatically perform this standardization.

Parameters

Basic experimental parameters

Titrant dose rate (mL/min)	2
ERC EP1 (exothermic)	-8
Data smoothing («filter factor»)	47
Stirring speed (802 Stirrer)	15
Evaluation start (mL)	0.5
Damping until (mL)	0.5

Calculations

The mean of the results for analysis of the noodle cake are added to the result from analysis of the flavor sachet. This gives the total amount of sodium in milligrams per serving of instant noodles. Na mg in single serve = ((EP1 – blank) \times C001 \times C002 \times C003)/C00

EP1 = endpoint in mL

blank = titration blank in mL

C00 = sample mass in g

C001 = concentration of titrant in mol/L

C002 = atomic mass of Na (22.98977 g/mol)

C003 = total mass of noodle cake or flavor sachet

Results

1. Na content of instant noodles («two minute noodles»)

Na, mg 273 ± 4.8 (n = 8) 984 ± 3.3 (n = 5) 1228 ± 3.5 (n = 5)
1256* (55% of rec. daily intake)
1501** (66% of rec. daily intake)

*Compare with average claimed value on product label = 1025 mg Na

** Compare with average claimed value on product label = 1255 mg Na

(Recommended average daily intake = 2280 mg Na)

2. Blank values obtained by regression analysis of titration results.

Component	Blank, mL titrant	Coeff. deter- mination R ²
Noodle cake	0.092	0.9920
Beef flavor sachet	0.170	0.9998
Chicken flavor sachet	0.110	1.0000

Method description

Titration plots

Fig. 1. TET determination of sodium in noodle cake

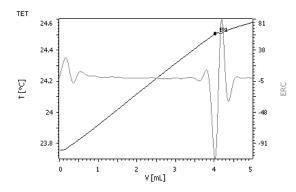


Fig. 2. TET determination of sodium in chicken flavor sachet

