
Titration Application Note H-121

Determination of ferrous ion in acidic solutions with ceric solution

This Application Note looks at the determination of ferrous ion in acidic solutions from approximately 0.25 g/L by thermometric titration with ceric titrant. The exothermic oxidation reaction shows a sharp endpoint that is detected using the Thermoprobe as a sensitive temperature sensor.

Method description

Principle

Ceric ion in strongly acidic solution is a suitable titrant for the direct determination of ferrous ion.

$$\begin{split} & \text{Ce}^{4+} + \text{e}^- \rightarrow \text{Ce}^{3+} \\ & \text{Fe}^{2+} \rightarrow \text{Fe}^{3+} + \text{e}^- \\ & \text{Fe}^{2+} + \text{Ce}^{4+} \rightarrow \text{Fe}^{3+} + \text{Ce}^{3+} \end{split}$$

Thus, one mole Ce^{4+} corresponds to one mole Fe^{2+} . The reaction is exothermic. Although solution temperature rises are not as large as with $Cr_2O_7^{2-}$ or MnO_4^- , endpoints are sharp. Ce^{4+} solutions have the advantage over MnO_4^- solutions in that they are indefinitely stable, and only require standardization on preparation. If desired, perchloric acid may be substituted for sulfuric acid to enhance the redox potential.

E° volts in 1 mol/L acid solutions:

in H_2SO_4 : 1.44 in $HCIO_4$: 1.70

Samples

«Test solution»

Sample preparation

No sample preparation required

Configuration

Basic equipment list for automated titration

814 USB Sample Processor	2.814.0030
859 Titrotherm	2.859.0010
Sample rack 24×75 mL	6.2041.340
Thermoprobe, fluoride resistant	6.9011.040
Sample beaker 75 mL	6.1459.400
802 Rod Stirrer	2.802.0010
Stirring propeller 104 mm	6.1909.020
1 × 800 Dosino	2.800.0010
1 × Dosing unit 10 mL	6.3032.210
tiamo™	6.6056.222

Solutions

Titrant	c(Ce ⁴⁺) = 0.25 mol/L ammonium ceric nitrate, (NH ₄) ₂ Ce(NO ₃) ₆ in 1 mol/L H ₂ SO ₄ or HClO ₄ solution
Acid	10% (w/v) H ₂ SO ₄ solution, or 20% (w/v) HClO ₄ solution
Standard solution	c(Fe ²⁺) = 0.3 mol/L ferrous ammonium sulfate (FAS), (NH ₄) ₂ SO ₄ • FeSO ₄ • 6H ₂ O, prepared in 0.1 mol/L H ₂ SO ₄ solution. Prepare freshly for each batch of Ce ⁴⁺ solution to be standardized. Calculate amount of FAS to be weighed, taking into account the stated purity of the reagent.

Note: FAS is not a primary standard, but is suitable for standardizing Ce⁴⁺ solutions used for routine analysis. It is advised that Ce⁴⁺ solutions should be prepared in large quantities (10 to 25 L) to avoid the necessity of frequent standardizations.

, ,	
«Test solution»	A test solution of approx. ~1 g/L Fe ²⁺ was prepared from FAS to simulate a customer solution containing a low Fe ²⁺ concentration. This was prepared by weighing approximately 1.77 g FAS
	into a 250 mL volumetric flask containing 10 mL 10% (w/v) H ₂ SO ₄ and making to volume with dist, water.

Analysis

Basic method (for approx. 1 g/L Fe²⁺ solution)

Pipette a 20 mL aliquot of test solution into a titration vessel, add 10 mL 10% (w/v) H_2SO_4 , and titrate with $c(Ce^{4+}) = 0.25$ mol/L solution to an exothermic endpoint.

<u>Standardization</u>

Using a specially-constructed *tiamo*TM program, aliquots from 0.5 to 5.0 mL were dispensed in 0.5 mL increments from a Dosino into titration vessels containing 10 mL of 10% (w/v) $\rm H_2SO_4$ and volumes of dist. water to give a total volume of approx. 30 mL at the start of titration. The *tiamo*TM program performs the regression analysis and automatically calculates the molarity, titration blank, and correlation coefficient of the regression line.

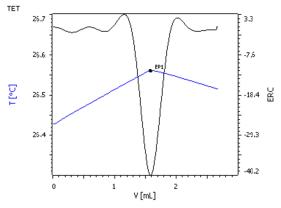
Method description

Parameters

Titrant dose rate (mL/min)	4	
ERC EP1 (exothermic)	-15	
Data smoothing («filter factor»)	45	
Stirring speed (802 Rod Stirrer)	14	
Evaluation start (mL)	0.5	
Damping until (mL)	0.5	

Calculations

g/L Fe^{2+} = ((EP1 – blank) × C01 × C02)/C00


EP1 = titrant consumption in mL C00 = sample weight in mL

C01 = concentration of cer titrant in mol/L C02 = molecular weight of Fe (55.847 g/mol)

Results

«test solution» Fe ²⁺	$1.03 \pm 0.005 \text{ g/L}$ (theoretical = 1.006 g/L)
Standardization:	$c(Ce^{4+}) = 0.2389 \text{ mol/L}$ blank = 0.029 mL coefficient of determination, $R^2 = 1.0000$

Titration plot

Titration plot, Fe²⁺ with Ce⁴⁺

