Thermo. Titr. Application Note No. H-115

Title:

Determination of hydrofluoric acid, ammonium fluoride, and maleic acid in acid cleaning solutions

Scope:	Determination of hydrofluoric acid, ammonium fluoride, and maleic acid in cleaning solutions by thermometric titration (TET).

Principle:

A direct TET with $2 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$ is used to determine the $\mathrm{HF}, \mathrm{NH}_{4} \mathrm{~F}$, and maleic acid $\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)$ contents of acid cleaning solutions. Three endpoints (EPs) are obtained, which may be assigned as follows:

EP1: $\quad \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\left(\mathrm{pKa}_{1}=1.9\right), \mathrm{HF}(\mathrm{pKa}=3.17)$
EP2: $\quad \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O} 4\left(\mathrm{pKa}_{2}=6.07\right)$
EP2: $\quad \mathrm{NH}_{4} \mathrm{~F}(\mathrm{pKa}=8.2)$
The HF content is determined by subtracting the difference (EP2-EP1) from EP1.

Reagents:
$2 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$, standardized against potassium hydrogen phthalate

Method:

Weigh accurately approximately 2 mL of acid cleaning mixture into a plastic titration vessel and add 30 mL D.I. water. Titrate to a third exothermic endpoint with $2 \mathrm{~mol} / \mathrm{L}$ NaOH .

Note: Inflections for EPs 1 and 3 are weak. Some variation from those conditions listed here may be necessary with some setups.

Results:

Analysis of a synthetic $\mathrm{HF}-\mathrm{NH}_{4} \mathrm{~F}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$ mixture $(n=7)$

	HF	$\mathrm{NH}_{4} \mathrm{~F}$	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$
Mean, \%	8.87	3.72	3.18
Std. dev. \%	0.05	0.03	0.13

Calculations:

HF \% = ((EP1- blank, mL-(EP2-EP1))*NaOH mol/L*FW HF*0.1)/sample mass, g
$\mathrm{NH}_{4} \mathrm{~F} \%=((E P 3-E P 2) * \mathrm{NaOH} \mathrm{mol} / \mathrm{L} * \mathrm{FW}$
$\mathrm{NH}_{4} \mathrm{~F}^{*} 0.1$)/sample mass, g
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \%=((E P 2-E P 1) * \mathrm{NaOH} \mathrm{mol} / \mathrm{L} * \mathrm{FW}$
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}{ }^{*} 0.1$)/sample mass, g
Note: in the calculation of HF \%, a blank value of 0.05 mL can be assumed for routine process control purposes.

Titration plots:

Fig. 1. Example of titration plot

Titration plots (cont.)

Fig. 2. Close-up of endpoint region of titration plot

