

Thermo. Titr. Application Note No. H-114

Title:	Determination of sulfuric acid, nitric acid, and hydrofluoric acid in etch solutions
Scope:	Determination of sulfuric acid, nitric acid, and hydrofluoric acid etch solutions.
Principle:	 Two separate titration sequences are required to analyze the mixture: titration of the HF content with Al(NO₃)₃ (the "elpasolite" reaction) titration of the H₂SO₄ with BaCl₂ followed by titration with NaOH to determine the "total acids" content The HF, H₂SO₄, and "total acids" contents are converted to a HNO₃ equivalent, with the HNO₃ content found by subtracting the HF and H₂SO₄ from the "total acids" content.
Reagents:	Titrant #1: 0.5 mol/L Al(NO ₃) ₃ in D.I. water
nougonis.	Titrant #2: 1 mol/L BaCl ₂ in D.I. water Titrant #3: 2 mol/L NaOH

Reagents:	Titrant #1: 0.5 mol/L Al(NO ₃) ₃ in D.I. water
	Titrant #2: 1 mol/L BaCl ₂ in D.I. water
	Titrant #3: 2 mol/L NaOH
	Standard #1: Anhydrous A.R. NaF, 99%
	Standard #2: Anhydrous A.R. Na ₂ SO ₄ , 99.9%
	Standard #3: A.R. potassium hydrogen pthalate, 99.95%
	<i>pH 4.5 buffer solution.</i> Weigh 130.9 g anhydrous
	potassium acetate, and 54.7 g anhydrous acetate and
	dissolve in 600 mL deionized water. Add 115 mL glacial
	acetic acid, and make to 1000 mL with deionized water.

Method:	Basic equipment list (for automated titration): 859 Titrotherm interface 814 Sample Processor with 24 place rack, 75 mL Pl tubes 802 Magnetic Stirrer with propeller mixer 800 Dosinos, 1 x 5 mL, 3 x 10 mL burettes 6.9011.040 Thermoprobe (fluoride resistant) Basic experimental parameters:	
	HF titration Sample size (g): Titrant delivery rate (mL/min) ERC (exothermic) Data smoothing factor Stirring speed (802 Magnetic Stirrer)	~3 4 -10 53 12

H₂SO₄ titration Titrant delivery rate (mL/min) ERC (exothermic) Data smoothing factor Stirring speed (802 Magnetic Stirrer)	4 -25 50 14
"total acids" titration Titrant delivery rate (mL/min) ERC (exothermic) Data smoothing factor Stirring speed (802 Magnetic Stirrer)	4 -150 50 15

Methods:

NOTES:

- (a) In each of the following methods, the HF titration must precede the H2SO4-"total acids" titration
- (b) Due to the concentrated nature of the solution, use of an "air pipette" to dispense accurate aliquots is not recommended. In the case of an accurate auto-diluter not being available, it is permissible to weigh in the samples, correcting the sample mass to a volume equivalent via a previously determined density of the sample.

1. HF titration

When installing the method for the first time, create a CV to hold the result for HF g / L. Dispense accurately 2 mL of sample solution into a plastic titration vessel, add 5 mL D.I. water, and add 30 mL acetate buffer, either automatically via a Dosino or by auto dilution. Titrate with the HF titration method.

2. *H*₂SO₄/total acids titrations

Dispense accurately 1 mL of sample solution into a plastic titration vessel, and add 30 mL D.I. water. Titrate with the H_2SO_4 "total acids" method.

3. Determination of blank for HF titration

When installing the method for the first time, prepare a CV for the HF titration blank. Prepare at least 5 plastic titration vessels, with dispensing volumes ranging from 0.5 to 2 mL of etch solution. Add 5 mL D.I. water and 30 mL acetate buffer. Titrate with the HF titration blank method.

4. Determination of blanks for H₂SO₄ and "total acids" titrations

When installing the methods for the first time, create CVs for the H₂SO₄ and "total acids" blanks. Prepare at least 5 plastic titration vessels, dispensing volumes of sample

ranging from 0.2 to 1.0 mL. Titrate with the H₂SO₄/"total acids" titration blank method.

- 5. Standardization of 0.5 mol/L Al(NO₃)₃ titrant Prepare at least 5 plastic titration vessels, weighing in accurately approximately 0.25 to 0.6 g freshly dried anhydrous NaF in roughly even increments. Add 5 mL acetate buffer and 25 mL water. Titrate with the Al(NO₃)₃ standardization method.
- 6. Standardization of 1 mol/L BaCl₂ titrant
 Prepare at least 5 plastic titration vessels, weighing in accurately approximately 0.14 to 0.85 g freshly dried anhydrous A.R. Na₂SO₄ in roughly even increments. Add 5 mL 5 mol/L HNO₃ and 25 mL D.I. water. Titrate using the BaCl₂ standardization method.
- 7. Standardization of 2 mol/L NaOH titrant
 Prepare at least 5 plastic titration vessels, weigh in accurately approximately 0.4 to 2.4 g freshly dried A.R. potassium hydrogen phthalate in roughly even increments. Add 30 mL D.I. water, and titrate using the NaOH standardization method.

Results:	Analysis of a sy	Analysis of a synthetic H ₂ SO ₄ -HNO ₃ -HF mixture		
		H_2SO_4	HF	HNO_3
	Mean, g/L	430.4	37.1	287.9
	Std. dev. g/L	0.5	0.1	0.7
	% RSD	0.11	0.22	0.24

Calculations:	HF titration:
	HF g/L = ((EP mL-HF blank, mL)*Al(NO ₃) ₃ mol/L*FW HF*6/sample volume, mL
	Conversion to HNO ₃ g/L equivalent:
	HNO ₃ g/L equivalent = HF g/L*FW HNO ₃ /FW HF
	H ₂ SO ₄ "total acids" titrations
	H_2SO_4 g/L = ((EP mL - H_2SO_4 blank, mL)*BaCl ₂ mol/L*FW H2SO4)/sample volume, mL
Calculations	Conversion to HNO ₃ g/L equivalent:

(continued)

 HNO_3 g/L equivalent = H_2SO_4 g/L*2*FW HNO_3 /FW H_2SO_4

"total acids" (as HNO_3) g/L = ((EP mL - "total acids" blank, mL)*NaOH mol/L*FW HNO_3 /volume, mL

Titration Plots:

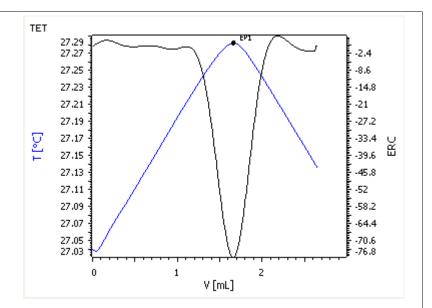


Fig. 1. Example of HF with AI titration plot

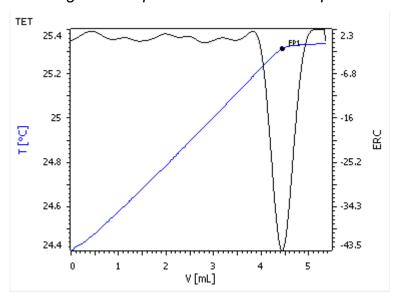


Fig. 2. Example of H₂SO₄ with BaCl₂ titration plot

Titration plots (continued)

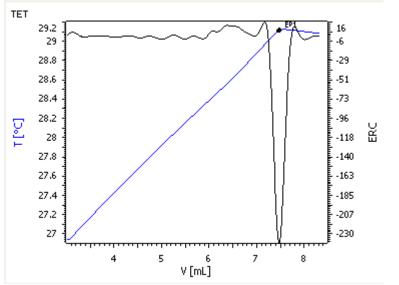


Fig. 3. Example of "total acids" with NaOH titration plot