Thermo. Titr. Application Note No. H-040

Title:
 Determination of HCl (ppm range) in silicone oil

Scope: \quad Determination of low level contents around 10 ppm of HCl in silicone

 oil.
Principle:

The silicone oils were dissolved in a mixture of toluene and 2-propanol (1:1) and titrated with $c(\mathrm{KOH})=0.01 \mathrm{~mol} / \mathrm{L}$ in 2-propanol.

Sample: Sample Preparation:	Different silicone oil samples No sample preparation was necessary. The samples could be weighed directly into the titration vessels.

Reagents:

- KOH in 2-propanol, 0.1 mol/L, Merck 1.05544.1000
- Benzoic acid, puriss $\geq 99.5 \%$, Fluka 12349
- Toluene, purum $\geq 99.0 \%$, Fluka 89682
- 2-propanol, purum > 99.0\%, Fluka 59310
- Paraformaldehyde, purum > 95.0\%, Fluka 76240

Method:	Basic experimental parameters for the HCl determination: Titrant delivery rate ($\mathrm{mL} / \mathrm{min}$): 1 No. of endothermic endpoints: 1 Data smoothing factor: 80 Stirring rate: Procedure: The samples were weighed directly into the titration vessel. 40 mL of the solvent ($1: 1$ mixture of toluene and 2-propanol) and approx. 0.5 g of paraformaldehyde were added. After 5 sec of stirring the mixture was titrated with $c(\mathrm{KOH})=0.01 \mathrm{~mol} / \mathrm{L}(50 \mathrm{~mL}$ of $\mathrm{KOH} 0.1 \mathrm{~mol} / \mathrm{L}$ were diluted with 2-propanol to 500 mL) to the first exothermic endpoint. To determine the method blank for sample 1 and 2 the sample sizes [in g] were plotted on the x-axis with the corresponding volumes of titrant [in mL] on the y-axis. A linear regression was carried out and the y-intercept corresponds to the method blank. Determination of the concentration of KOH in 2-propanol: Benzoic acid was dried for 2 hours at $105^{\circ} \mathrm{C}$ and coo led down in a desiccator. Exactly 0.3154 g of the benzoic acid were weighed into a 100 mL -volumetric flask, approx. 5 mL of 2-propanol were added to dissolve the benzoic acid and the solution made up to the mark with dist. water. Then different amounts of the solution ($0.5,0.75,1.0$ and 1.25 mL) were dosed into the titration vessel and solvent was added to reach a volume of approx. 35 mL . The volumes of the titrant were then plotted on the x -axis with the corresponding sample sizes (in mmol) on the y-axis. A linear regression was performed. The slope of the resulting curve represents the concentration of the NaOH -solution.

Results:

Sample size [g]	Volume of titrant [mL]	HCI [ppm]
12.1170	0.648	8.31
14.1120	0.705	8.54
10.9020	0.619	8.30
13.1420	0.670	8.24
8.2940	0.562	8.50
12.0860	0.644	8.20
Mean value SD RSD		8.35 ppm 0.140 ppm 1.68%

Fig. 1: Results of the determination of HCl , Sample 1

Fig. 2: Blank determination, Sample 1

Sample size [g]	Volume of titrant [mL]	HCI [ppm]
12.0060	0.533	10.97
13.0620	0.572	11.10
15.2530	0.640	11.07
14.0000	0.584	10.66
10.8920	0.509	11.33
14.1780	0.668	12.60
10.6320	0.522	12.02
Mean value SD RSD		11.39 ppm 0.677 ppm 5.94%

Fig. 3: Results of the determination of HCl , Sample 2

Fig. 4: Blank determination, Sample 2

Titer determination of KOH in 2-propanol:

Sample size [mL]	Sample size [mmol]	Volume of titrant [mL]
0.5	0.0129	1.730
0.5	0.0129	1.736
0.75	0.0194	2.391
0.75	0.0194	2.443
1.0	0.0258	3.020
1.0	0.0258	3.020
1.25	0.0323	3.789
1.25	0.0323	3.782

Fig. 5: Results of the titer determination of KOH in 2-propanol

Fig. 6: Regression analysis to determine the concentration of KOH in 2-propanol
Concentration $=$ slope of linear regression $=0.0095 \mathrm{~mol} / \mathrm{L}$

Thermometric Titration Plot:

Fig. 7: Example curve of the HCl content in silicone oil

Legend:
Red = solution temperature curve
Black = second derivative curve
Brown area $=$ Endpoints in this area are ignored

