Thermo. Titr. Application Note No. H-024

Title:	Determination of Tar Acids (Phenolics) in Tar
	Products

Scope: Determination of tar acids in coal tar products. This procedure may also be applied to the determination of a range of weakly acidic organic compounds such as carboxylic acids, hydroxy acids, phenols, phenolic acids, keto-enols, imides and aromatic nitro compounds¹.

Principle: A sample is dissolved in acetone, and titrated with standard KOH in anhydrous methanol or isopropanol. At the endpoint, excess hydroxyl ions react catalytically and strongly exothermically with acetone to form diacetone alcohol. The procedure is essentially an automated version of the S.T.P.T.C. method².

Reagents:	Standard	0.5mol/L	KOH	in	anhydrous	methanol	or
	isopropan	isopropanol.					
	Anhydrous	Anhydrous acetone (<0.2% H ₂ O), A. R.					

Method:	Basic Experimental Parameters:	Basic Experimental Parameters:		
	Data rate (per second)	10		
	Titrant delivery rate (mL/min.)	0.5		
	No. of exothermic endpoints	1		
	Data smoothing factor	50		
	Procedure: Weigh accurately app product into a clean, dry titration products should be melted and n an appropriate amount into th allowing to cool. Add a spinring acetone. Cover with a watch glas magnetic stirrer until thoroughly 0.5mol KOH in methanol to an exc	proximately 2-5g coal tar n vessel. Solid coal tar nixed, before dispensing the titration beaker and g, and 25mL anhydrous ss, and mix slowly on a dissolved. Titrate with othermic endpoint.		

Results:	Percentage phenol in coal tar products	
	1. Coal tar solvent. Mean = 2.53±0.004% (n=4) 2. Creosote. Mean = 0.70±0.003	

Calculation:	% w / w Tar Acids = $\frac{((titre, mL - blank, mL) \times M KOH \times FW phenol \times 100)}{(sample mass, g \times 1000)}$
	% w/w Tar Acids = $\frac{((1.311 - 0.024) \times 0.5 \times 94.113 \times 100)}{(2.3926 \times 1000)}$
	= 2.53%
References:	1. Vaughan, G. A. <i>Thermometric and Enthalpimetric Titrimetry</i> . Van Nostrand Reinhold Co. Ltd (1973)

2. S. its pro	T.P.T.C. "Standard methods for testing tars and oducts", 6 th Ed., S.T.P.T.C. (1967)
Thermometric Titration Plot:	
23 200	EP1: 0.701ml IP1,02 Max -E
23:100-	First derivative (reaction rate) curve
22.900	Second derivative curve
22.800 - 22.700 -	
22.600	
22.500 -	
22,300	Titration temperature curve
22.100	
22.000	0,20 0,40 0,50 0,80 1,00
Legen	d:
Red =	solution temperature curve
Green	= first derivative curve
Black	= second derivative curve