
IC Application Note CIC–011

Analysis of an ion exchanger applying Metrohm Combustion IC

The production of ultrapure water for the pharmaceutical or semiconductor industry requires high-quality ion exchangers. Metrohm Combustion IC is an invaluable tool for testing the purity of anion-exchanger materials. The initial sample was wet and had been dried at 105 °C in a special oven with waste air removal.

Results

	Mean [g/kg] (n = 3)	RSD [%] (n = 3)
Chloride	90.6	3.5
Sulfur	57.3	0.7

Nitrite and nitrate peaks cannot be used for nitrogen quantification, for which reason they are not integrated.

Sample

Polystyrene/divinylbenzene-based anion exchanger

Sample preparation

Dried sample was analyzed by Combustion IC with flame sensor technology and intelligent Partial-Loop Injection with Inline Matrix Elimination

Columns

Metrosep A Supp 5 - 150/4.0	6.1006.520
Metrosep A Supp 4/5 Guard/4.0	6.1006.500
Metrosep A PCC 1 HC/4.0	6.1006.310

Solutions

Eluent	3.2 mmol/L sodium carbonate 1.0 mmol/L sodium hydrogen carbonate
Suppressor regenerant	100 mmol/L sulfuric acid
Rinsing solution	Detector outlet
Absorber solution	100 mg/L hydrogen peroxide

Parameters

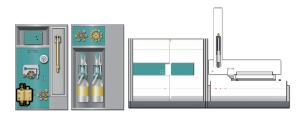
Flow rate	0.7 mL/min
Injection volume	100 μL
P _{max}	15 MPa
Recording time	20 min
Column temperature	30 °C

Combustion parameters

Argon	100 mL/min
Oxygen	300 mL/min
Oven temperature	1050 °C
Post-combustion time	120 s
Initial volume of absorption solution	2.0 mL
Water inlet	0.1 mL/min

Analysis

Conductivity after sequential suppression


Instrumentation

881 Compact IC pro – Anion – MCS	2.881.0030*
IC Conductivity Detector	2.850.9010*
920 Absorber Module	2.920.0010*
Combustion Module	2.136.0700*
Autosampler MMS 5000	2.136.0800
Kit for solid samples	6.7302.000
* available as 881 Metrohm Combustion IC (2 881 3030)	

* available as 881 Metrohm Combustion IC (2.881.3030)

Calibration MiPT

Calibration range	Factor of 50
Standard solution	
Chloride, sulfate	3.0 mg/L
1. Level	$0.06 \text{ mg}/L = 4 \mu L$
2. Level	$0.12 \text{ mg/L} = 8 \mu \text{L}$
3. Level	0.3 mg /L = 20μ L
4. Level	0.6 mg /L = 40μ L
5. Level	1.5 mg /L = 100 μ L
6. Level	3.0 mg /L = 200μ L

www.metrohm.com

