

Application Bulletin 432/1 e

Determination of tin(II) by anodic stripping voltammetry

Summary

This Application Bulletin describes the determination of Sn(II) in presence of Sn(IV) by anodic stripping voltammetry (ASV). Using an electrolyte containing fluoride, Sn(IV) gives no signal, so that a speciation is possible. The limit of detection is 2.5 μ g/L.

Instruments

VA instrument	
capable of operating a Multi-Mode	
Electrode and supporting differential	
pulse (DP) measuring mode	
Measuring vessel of PFA	6.1450.210

Electrodes

WE	Multi-Mode Electrode pro Mercury drop capillary	6.1246.120 6.1226.030
RE	Ag/AgCl reference electrode Ag/AgCl/KCl (3 mol/L) Electrolyte vessel Filled with c(KCl) = 3 mol/L	6.0728.x20 6.1245.010
AE	Pt rod electrode	6.0343.x00

Reagents

All of the used reagents must be of purest quality possible (for analysis or for trace analysis*).

- Hydrochloric acid, for trace analysis*, w(HCI) = 30%, CAS 7647-01-0
- PIPES, Piperazine-1,4-bis(2-ethane sulfonic acid), CAS 5625-37-6
- Sodium hydroxide solution, w(NaOH) = 30%, for trace analysis*, CAS 1310-73-2
- Ammonia solution, w(NH₃) = 25%, for trace analysis*, CAS 1336-21-6
- Sodium nitrate, NaNO₃, for trace analysis*, CAS 7631-99-4
- Sodium floride, NaF, for trace analysis*, CAS 7681-49-

- Tin(II) chloride dihydrate, SnCl₂ · 2H₂O, for analysis, CAS 10025-69-1
- Ultrapure water, resistivity >18 MΩ·cm (25 °C), type I grade (ASTM D1193)
- * e.g., Merck suprapur®, Honeywell Fluka TraceSelect® or equivalent

Solutions

PIPES buffer	c(PIPES) = 1 mol/L, pH 8 7.6 g PIPES are mixed with 1 mL sodium hydroxide solution and 5 mL high purity water. The pH is adjusted to 8 ± 0.1 with ammonia solution. The solution is filled up to 25 mL.
NaNO₃ solution	c(NaNO ₃) = 1 mol/L 4.25 g NaNO ₃ are dissolved in 50 mL ultrapure water.
NaF solution	c(NaF) = 1 mol/L 2.1 g NaF are dissolved in 50 mL ultrapure water.
Ammonia solution diluted	w(NH ₃) = 10%

Standard solutions

Sn(II) standard stock solution	$\beta(\text{Sn}^{2+})=1$ g/L 0.190 g SnCl ₂ · 2H ₂ O are dissolved in 50 mL oxygen free water. 10 mL hydrochloric acid are added. The solution is made up to 100 mL using oxygen free water. The solution is sensitive against oxidation and should prepared fresh daily.
Sn(II) standard	$\beta(\text{Sn}^{2+}) = 1 \text{ mg/L}$
solution	The diluted working solutions are prepared from standard stock solutions by dilution in c(HCI) = 0.01 mol/L. Oxygen free water has to be used.

Analysis

Measuring solution

5 mL (diluted) sample

0.5 mL NaNO₃ solution

3.5 mL NaF solution

0.5 mL PIPES buffer

The pH is adjusted to 8.0 with diluted ammonia solution.

The concentration is determined by standard addition.

Parameters

Voltammetric	
Electrode operating mode	HMDE
Measuring mode	DP – Differential pulse
Stirring rate	2000 min ⁻¹
Potentiostatic pretreatment	
Potential 1	-0.9 V
Waiting time 1	30 s
Equilibration time	10 s
Sweep	
Start potential	-0.9 V
End potential	-0.3 V
Potential step	0.006 V
Potential step time	0.1 s
Sweep rate	0.06 V/s
Pulse amplitude	0.05 V
Substance	
Name	Sn(II)
Characteristic potential	-0.65 V

Example

Determination of tin(II) by anodic stripping voltammetry

Results

Sample	Mouthwash
Sample size	0.05 mL (1:100 diluted)
β(Sn(II))	2.4 g/L

Comment

- With a deposition time (Waiting time 1) of 90 s the limit of detection is 2.5 μ g/L.
- Any contact of the sample or Sn(II) standards with air should be avoided because Sn(II) is easily oxidized. Therefore it is recommended to purge the electrolyte before the addition of the sample.
- The bridge electrolyte in the reference electrode has to be renewed every day. Otherwise Ag+ diffusing out of the reference system will be reduced to Ag⁰ at the diaphragm of the outer electrolyte vessel by Sn2+ ions from the sample solution. That will block the diaphragm of the reference electrode after a certain time.

References

Lejeune, R. Thunus, J. Thunus, L., Polarographic determination of Sn(II) in samples containing Sn(IV) such as in 99m-technitium radiopharmaceutical kits, Anal. Chim. Acta 332, (1996) 67-71

Appendix

Report for the example determination of Sn(II) in mouthwash

```
====== METROHM 797 VA COMPUTRACE (Version 1.0.0.1) (Serial No. 0) ========
Determination : 04051019_Lsg04051001.dth
 Sample ID
                  : Lsg04051001
Creator method:
Creator determ.: zu
                                         Date :
                                                                        Time:
                                         Date : 2002-04-05
                                                                        Time:
                                                                                10:19:29
Modified by : ---
                                         Date:
                                                                        Time:
            : SnII in toothpaste.mth
: Determination of Sn(II) in toothpaste
: 5.5 mL H2O + 3.5 mL NaF + 0.5 mL NaNO3 + 0.5 mL PIPES -> pH 7.8
: 0.05 mL Mundspül-Lösung (1:100 verdünnt, mit 0.1M HCl)
Remark1
Remark2
Sample amount : 0.0005 mL Cell volume : 10.050 mL
               : Sn(II)
 Substance
                  : 119.927 ug/L
 Conc.
 Conc.dev.
                : 3.915 ug/L
: 1.205 ug
                                      ( 3.26%)
 Amount
Add.amount
                : 500.000 ng
 VR
        V
                 nA
                           I.mean Std.Dev. I.delta
                                       0.072
        -0.656
                   8.84
                             8.89
                                                    0.00
1 - 2
2 - 1
        -0.656
                    8.94
                   12.45
        -0.656
                            12.55
                                      0.150
                                                    3.66
 2 - 2
        -0.656
                   12.66
                   15.94
        -0.650
                            16.11
                                      0.242
                                                    3.56
     2
        -0.650
                   16.28
             Calibr.
                              Y.reg/offset
                                                    Slope Mean deviat. Corr.Coeff.
 Substance
 Sn(II)
              std.add.
                                8.900e-009 7.421e-005
                                                               2.053e-010
Final results
                                            +/- Res. dev. %
                                                                     Comments
 Sn(II):
                     = 2410.539 \text{ mg/L}
                                            78.691
                                                           3.264
Tin(II)
```

Method print for the determination of Sn(II) in mouthwash

motriou print ro	the determination of			
Method parame	ters			
Title Remark1	: SnII in toothpaste.mth : Determination of Sn(II) in toothpaste and mouthwash : 5.5 mL H2O + 3.5 mL NaF + 0.5 mL NaNO3 + 0.5 mL PIPES -> pH 7.8 : 0.05 mL Mouthwash (1:100 diluted, with 0.1M HCl)			
Calibration Technique Addition	: Standard addition : Batch : Manual			
Sample ID Sample amount Cell volume (m	(mL): 0.001			
Voltammetric p				
Mode		: DP - Differential Pulse		
Highest current	t range range	: 10 mA : 100 nA		
Electrode Drop size (1 Stirrer speed	9)	: HMDE : 4 : 2000		
Initial electr	. conditioning	: No		
No. of additio No. of replica		: 2 : 2		
Measure blank		: No		

Addition	purge time (s)	: 10				
	-			1.0			
	purge time (s)	:	10			
Start pot	ning cycles cential (V) ntial (V) ycles			0.000			
Cleaning Cleaning Deposition	amic (measure potential (V time (s) on potential on time (s)	ment)) (V)	: : : : -	0.900			
Start pot End poter Voltage s Voltage s Sweep rat	step time (s) te (V/s) plitude (V)		: 1 : - : - : :	0.900			
Cell off	after measur	ement	:	Yes			
	luation						
Regressic Peak eval Minimum Minimum Mi	e spikes	.steps) A)	: Lin : Hei : 5 : 1.0 : No : 4 : Yes	ear Regr ght 00e-010	ession		
 Sn(II)		 : -0	 550 V +/	 - 0 050			
	solution volume (mL)				•		
Tin(II)			al result c * (10.05		= 5) * (1 / 1) + 0 - 0	
Baseline							
						scope	
Sn(II)	Sample Addition 1 Addition 2	yes yes yes	 		linear linear linear	wholePeak wholePeak wholePeak	