Application Bulletin 420/2 e

Determination of suppressor with CVS using the calibration technique «smartDT» with dynamic addition volumes

The Application Bulletin describes the determination of suppressor in acid copper baths by smartDT. The determination of suppressor with dilution titration (DT) involves numerous additions with standard solution or sample to reach the evaluation ratio. Usually fixed, equidistant addition volumes are used. With smartDT variable addition volumes are used that are dynamically calculated by the software. At the beginning the volumes are bigger. Towards the evaluation ratio the addition volume becomes smaller to guarantee a good accuracy of the result. The operator defines the first and the smallest addition volume to be used. All volumes in between are calculated by the software considering the progress of the determination.

The time saving with smartDT compared to a classic DT with fixed addition volumes can be up to 40%.

smartDT is suitable for nonlinear regression and quadratic regression as well as linear interpolation. It can be used for determination of suppressor in acid copper baths as well as in tin and tin-lead baths and works with 1, 2, and 3 mm Pt working electrodes.

An 800 Dosino is required for the automatic addition of suppressor standard or sample. The method can also be used in fully automated systems.

Content

	1.1.	Instruments and accessories	.1
	1.2.	Comments	.1
2.	Modify	ving a method	.2
	2.1.	Sample data variables	.2
	2.2.	Calibration and determination tracks	.2
	2.3.	CALL commands	.3
	2.4.	Names	.3
	2.5.	Comments	.3
3.	Examp	ble for an application	.4
	3.1.	Electrodes	.4
	3.2.	Reagents	.4
	3.3.	Solutions	.4
	3.4.	Standard solutions	.4
	3.5.	Check standards	.4
	3.6.	Sample preparation	.4

	3.7.	Analysis	5
	3.8.	Parameters	5
	3.9.	Dosinos	5
	3.10.	Example determination	5
	3.11.	Results	6
4.	Gener	al Comments	6
5.	6. Appendix		8
	5.1.	Calculation formula	8
	5.2.	Method sequence	9
	5.3.	Example determination	10

1.1. Instruments and accessories

Quantity	Article number	
1	2.894.1210	894 Professional CVS
		semiautomated
1	6.5339.0X0	CVS electrode kit
1	6.6065.11X	viva 1.1 or higher

Fig. 1: 894 Professional CVS semiautomated

1.2. Comments

- viva 1.1 or higher is required for smartDT.
- For further information or details regarding operation, refer to the tutorial or manual of viva and the manual of the 894 Professional CVS.
- smartDT can also be carried out with a 884
 Professional VA. This instrument requires the use of viva 2.0 or higher.

Determination of suppressor with CVS using the calibration technique smartDT with dynamic addition volumes

2. Modifying a method

The example method «AB 420 smartDT.vmet» is copied onto the hard disk of the PC when the **viva** software is installed. After importing the method into a **viva** method group it can be opened in the program part «Method». For the location of example files and the procedure to import methods into **viva**, please refer to the **viva** Help (Support ► How to proceed? ► Methods ► Importing a method).

«AB 420 smartDT.vmet» is an executable method to determine suppressor in acid copper bath with smartDT using Dosinos for the automatic addition of VMS and suppressor standard or sample. Commands and tracks which are related to full automation using a sample changer are not part of the method. Names of Dosing Units and solutions are defined according to the **viva** method template «Suppressor determination (CVS, DT), semiautomated» and have to be adapted where necessary.

If the method should be used directly, application specific parameters such as CVS measuring parameters, volume of VMS, concentration of the suppressor standard solution, curve type of the calibration curves, and evaluation ratio have to be adapted. For more information on these modifications please refer to the **viva** tutorial.

If a method for the determination of suppressor with classic DT is already available, this existing method can be adapted by copying individual tracks and commands from the method «AB 420 smartDT.vmet». The procedure to implement the necessary modifications into an existing method is described below.

2.1. Sample data variables

New sample data variables need to be defined in the command **START – MAIN TRACK**.

Name	Туре	Assignment
Initial volume in mL	Number	ID4
Minimum volume in mL	Number	ID5

For both variables, the option «Check at start» should be active.

Note! Make sure that the spelling of the names is correct. An exact match is necessary for the calculation formulas used in the **ADD** commands.

2.2. Calibration and determination tracks

Delete the complete tracks for the calibration and for the determination in the existing method. Copy the **TRACK – DT DETERMINATION** and **TRACK – DT CALIBRATION** from the

example method into the existing method. Compared to the deleted tracks, the new tracks have some additional and some modified commands.

2.2.1. Additional commands

The **WAIT** commands are for documentation purposes only. The command generates a message documenting the previous addition volume. This allows to follow the development of the addition volumes during a running determination. If a live view on the addition volume is not required, the commands **WAIT – DOC volume SMARTDT SAMPLE** and **WAIT – DOC volume SMARTDT CALIB** may be deleted.

2.2.2. Modified commands

The commands **ADD SAMPLE DT –SAMPLE SMARTDT** and **ADD STD – STANDARD SMARTDT** have two addition increments each:

Addition increments			
	Number	2 💌	
	Addition volume 1	nitial volume in mL' mL	(1)
	Addition volume 2	,ATIO'))/5)) mL	(2)

(1) Addition volume 1 is linked to the sample data variable «Initial volume in mL» thus using the volume entered on the workplace for this parameter for the first addition.

(2) Addition volume 2 incorporates a calculation formula which calculates the addition volume based on the difference between the current signal and the evaluation ratio. This formula is used for the calculation of the second and all following additions.

The basic formula for the calculation of the addition volume is:

A «I	ddition volume x [mL] = Minimum volume» + VEFF	* (AREANORM - Evaluation ratio) 5
	«Minimum volume»	Sample data variable «Minimum volume in mL»
	VEFF	Projected volume at evaluation ratio
	AREANORM	Standardized area of the latest signal
	Evaluation ratio	Value of the evaluation ratio
	5	Empiric factor
_		

For more details on the exact formula, see «5.1. Calculation formula».

2.3. CALL commands

After inserting the new tracks, the links in the following **CALL** commands have to be reviewed.

2.3.1. START – MAIN TRACK

The command **CALL – SAMPLE OR STANDARD?** must contain the following conditions:

	Track name	DT Determination
	Sample type	Sample
а	nd	
	Track name	DT Calibration
	Sample type	Standard

2.3.2. TRACK – DT DETERMINATION and TRACK – DT CALIBRATION

The **CALL VA** commands must link to the 'Track name' of the track **VA TRACK** used in the method.

Determination of suppressor with CVS using the calibration technique smartDT with dynamic addition volumes

2.4. Names

2.4.1. CVS command

The name of the CVS command should be **CVS**. If a different name is used for this command, the calculation formulas in the commands **ADD SAMPLE DT – SAMPLE SMARTDT** and **ADD STD – STANDARD SMARTDT** have to be modified.

2.4.2. Substance name

The name for the substance should be «Suppressor». If a different name is used for the substance, the calculation formulas in the commands **ADD SAMPLE DT – SAMPLE SMARTDT** and **ADD STD – STANDARD SMARTDT** have to be modified.

2.4.3. Suppressor standard solution

The default name for the suppressor standard solution is «Std or sample». If a solution with a different name is used, the command **ADD STD – STANDARD SMARTDT** has to be adapted accordingly.

2.4.4. Dosing Unit for sample addition

The default name for the Dosing Unit for the addition of sample is «2 mL Standard or sample». If a Dosing Unit with a different name is used, the command **ADD SAMPLE DT – SAMPLE SMARTDT** has to be adapted accordingly.

2.5. Comments

- If the method setup is started with one of the viva method templates «Suppressor determination (CVS, DT), semiautomated» or «Suppressor determination (CVS, DT), automated», additional parameters may need to be modified to suit the specific application. Parameters which typically need to be adapted:
 - CVS measuring parameters
 - $\circ \quad \text{Volume of VMS}$
 - Concentration of the suppressor standard solution
 - Curve type of the calibration curves
 - Evaluation ratio
- The stop criterion in the LOOP commands of the example method «AB 420 smartDT.vmet» automatically adapt to the evaluation ratio. Therefore, the signal ratio Q/Q(0) is defined relative to the evaluation ratio. Parameters for «Signal assessment for DT» in the LOOP commands:

Application Bulletin 420/2 e

Determination of suppressor with CVS using the calibration technique smartDT with dynamic addition volumes

VA measuring command	CVS
Substance	Suppressor
Signal ratio Q/Q(0)	'ED.Calibration.CVS.Suppress or.EVRATIO' - 0.01

- The following identifiers and command names should not be changed, since it would affect the calculation formula:
 - Sample data (ID4): Initial volume in mL
 - Sample data (ID5): Minimum volume in mL
 - Substance name: Suppressor
 - CVS CVS
 - ADD STD STANDARD SMARTDT
 - ADD SAMPLE DT SAMPLE SMARTDT

3. Example for an application

The functionality of the smartDT is shown by the model suppressor polyethylene glycol with an average molecular weight of 6000 g/mol (PEG6000).

3.1. Electrodes

WE	Driving axle	6.1204.510	
	Platinum electrode tip 2 mm	6.1204.610	
AE	Separate Pt rod electrode	6.0343.100	
RE	LL Ag/AgCl reference electrode	6.0728.130	
	Reference electrolyte 3 mol/L KCl		
	Electrolyte vessel	6.1245.010	
	Bridge electrolyte 1 mol/L KNO ₃		

3.2. Reagents

- Copper sulfate, for analysis, CuSO₄·5H₂O, CAS 7758-99-8
- Sulfuric acid, for analysis, w(H₂SO₄) = 96%, CAS 7664-93-9
- Sodium chloride, for analysis, CAS 7647-14-5
- Polyethylene glycol, PEG6000, M_w(PEG6000) = 5000– 7000 g/mol, for synthesis, CAS 25322-68-3
- Deionized water, type II grade (ISO 3696)

3.3. Solutions

VMS (virgin make-up	β(CuSO₄·5H₂O) = 60 g/L
solution)	$\sigma(H_2SO_4) = 130 \text{ mL/L}$
	β(Cl⁻) = 50 mg/L
	60 g CuSO₄·5H₂O and 82 mg
	NaCl are dissolved in approx.

800 mL deionized water and
filled in a 1 L volumetric flask.
130 mL H ₂ SO ₄ are added
carefully (Attention! Solution
becomes very hot!). After
cooling to room temperature,
the solution is filled up to the
mark with deionized water.

3.4. Standard solutions

Suppressor stock solution	σ(suppressor) = 1000 mL/L 2.5 g PEG6000 are dissolved and made up to 50 mL with deionized water in a volumetric flask. → β(PEG6000) = 50 g/L
Suppressor standard solution	 σ(suppressor) = 5 mL/L 49.75 mL VMS is accurately dosed into a vial. 0.25 mL suppressor stock solution is pipetted into the VMS.

3.5. Check standards

Check standard 3 mL/L	σ(suppressor) = 3 mL/L 49.85 mL VMS is accurately dosed into a vial. 0.15 mL suppressor stock solution is pipetted into the VMS.
Check standard 4 mL/L	 σ(suppressor) = 4 mL/L 49.8 mL VMS is accurately dosed into a vial. 0.2 mL suppressor stock solution is pipetted into the VMS.
Check standard 6 mL/L	 σ(suppressor) = 6 mL/L 49.7 mL VMS is accurately dosed into a vial. 0.3 mL suppressor stock solution is pipetted into the VMS.
Check standard 7 mL/L	 σ(suppressor) = 7 mL/L 49.65 mL VMS is accurately dosed into a vial. 0.35 mL suppressor stock solution is pipetted into the VMS.

3.6. Sample preparation

No sample preparation required.

3.7. Analysis

Set values for «Initial volume in mL» and «Minimum volume in mL» on the Workplace (For recommen-dations on the values for the two parameters, see «4. General Comments»).

- 1. Start determination.
- 2. 50 mL VMS are dosed into the measuring vessel.
- 3. Electrode is initially conditioned in VMS until the standard deviation of the signals is less than 0.5%.
- 4. The signal of the VMS is recorded.
- 1st addition volume is added as defined on the Workplace for «Initial volume in mL».
- 2nd and following addition volumes are calculated automatically by the software (for detailed information on the calculation formula see «5.1. Calculation formula»)

3.8. Parameters

Volumes	
Volume VMS	50 mL
Addition volume	Calculated
(standard or sample)	(see Appendix)
Voltammetric	
Electrode	RDE
Measuring mode	CVS
Stirring speed	2500 min ⁻¹
Hydrodynamic measurement	Yes
Sweep	
Start potential	1.625 V
First vertex potential	-0.175 V
Second vertex potential	1.625 V
Potential step	0.006 V
Potential step time	0.06 s
Sweep rate	0.1 V/s
No. of preparation cycles	1
No. of measuring cycles	2
Substance + calibration	
Name	Suppressor
Peak potential	0.2 V
Tolerance	0.2 V
Baseline	Horizontal
	Start 0.8 V
	End -0.05 V
Calibration method	DT (dilution titration)
Evaluation ratio	0.5

Application Bulletin 420/2 e

Determination of suppressor with CVS using the calibration technique smartDT with dynamic addition volumes

Stop criteria

3.9. Dosinos

Dosing Unit	Cylinder volume	Content
VMS	50 mL	VMS
Standard or sample	2 mL	Suppressor standard for calibration
		or sample for determination

3.10. Example determination

Application Bulletin 420/2 e

Determination of suppressor with CVS using the calibration technique smartDT with dynamic addition volumes

3.11. Results

Check standard	σ (suppressor)	Recovery
3 mL/L	3.14 mL/L	104.7%
4 mL/L	4.02 mL/L	100.5%
5 mL/L	5.02 mL/L	100.4%
6 mL/L	6.12 mL/L	102.0%
7 mL/L	7.18 mL/L	102.6%

4. General Comments

- «Initial volume in mL» defines the volume for the first addition of standard or sample. It is also used for the calculation, if the volume at the evaluation ratio cannot be predicted or does not show a reasonable value.
- Recommended value for «Initial volume in mL» is one quarter of the volume that is usually necessary to reach the evaluation ratio in the calibration. The smallest volume possible is 0.01 mL. To avoid entering too small volumes, the value for the sample data variable can be monitored, e.g.,:

Upper limit 1	

- «Minimum volume in mL» defines the smallest volume of standard or sample to be added when the volume is calculated by the software.
- Recommended value for «Minimum volume in mL»
 5 ... 7% of the volume that is usually necessary to reach the evaluation ratio in the calibration. The smallest volume possible is 0.01 mL. To avoid entering too small volume the value for the sample data variable can be monitored, e.g.,:

Lower limit	0.01
Upper limit	0.1

 Estimation of time saving for a calibration with σ(suppressor) = 5 mL/L (classic DT addition volume: 30 μL; smartDT: «Initial volume in mL» 0.09, «Minimum volume in mL» 0.025)

 Estimation of time saving for a determination of a sample with σ(suppressor) = 6 mL/L (classic DT addition volume: 40 μL; smartDT: «Initial volume in mL» 0.09, «Minimum volume in mL» 0.035)

Application Bulletin 420/2 e

Determination of suppressor with CVS using the calibration technique smartDT with dynamic addition volumes

Estimation of time saving for a determination of a sample with σ(suppressor) = 3 mL/L (classic DT addition volume: 40 μL; smartDT: «Initial volume in mL» 0.09, «Minimum volume in mL» 0.035)

time saving: 34%
If the smartDT is done in a sample series with a fully automated system, the display of ID4 and ID5 in the sample table has to be activated first. To display the two additional IDs, go to the viva «Workplace» and select the «Determination series» tab in the «Run» window. Under «Sample table ► Properties» the display of ID4 and ID5 is activated with check boxes.

Determination of suppressor with CVS using the calibration technique smartDT with dynamic addition volumes

5. Appendix

5.1. Calculation formula

Basic formula for the calculation of the addition volume:

Addition volume x [mL] = «Minimum volume» + VEFF * (AREANORM - Evaluation ratio)

Formula used in the command ADD SAMPLE DT - SAMPLE SMARTDT

'SD.Minimum volume in mL' + (Case(Abs('RS.CVS.Suppressor.VEFFSMPL' * 1000) <= 'SD.Initial volume in mL' * 7 ; Abs('RS.CVS.Suppressor.VEFFSMPL' * 1000) ; 'SD.Initial volume in mL' * 7 ; 'SD.Initial volume in mL' * 7) * ((Abs('RS.CVS.Suppressor.VAR{ Round('SAMPLE smartDT.ACO' - 1) }.REP{1}.AREANORM' -'ED.Calibration.CVS.Suppressor.EVRATIO')) / 5))

Formula used in the command ADD STD - STANDARD SMARTDT

```
'SD.Minimum volume in mL' + ( Case( Abs( 'RS.CVS.Suppressor.VEFFSTD' * 1000 ) <= 'SD.Initial volume in mL'
* 7 ; Abs( 'RS.CVS.Suppressor.VEFFSTD' * 1000 ) ; 'SD.Initial volume in mL' * 7 ; 'SD.Initial volume in
mL' * 7 ) * ( ( Abs( 'RS.CVS.Suppressor.VAR{ Round('STANDARD smartDT.ACO' - 1 ) }.REP{1}.AREANORM' -
'ED.Calibration.CVS.Suppressor.EVRATIO' ) ) / 5 ) )
```

Transfer of the basic formula to viva:

Basic formula	viva	
Addition volume x [mL] x - addition number	Calculated add	ition volume has to be in milliliter (mL)
«Minimum volume»	'SD.Minimum vol	ume in mL'
	Volume in milli	iter (mL) as defined on the Workplace
VEFF projected volume at evaluation ratio	Case(Abs('RS.C 'RS.CVS.Suppres 7	CVS.Suppressor.VEFFSTD' * 1000)<= 'SD.Initial volume in mL' * 7;Abs(ssor.VEFFSTD' * 1000); 'SD.Initial volume in mL' * 7;'SD.Initial volume in mL' *
	('RS.CVS.Supp	pressor.VEFFSTD' * 1000) or
	('RS.CVS.Supp	oressor.VEFFSMPL' * 1000) – Result variable which reads out the projected volume at evaluation ratio in mL for the standard (VEFFSTD) or the sample (VEFFSMPL). Multiplication with 1000 is required since the base unit for the variable is liter (L).
	Abs() -	Function which handles the case that the projected volume gets negative. \rightarrow Always the absolute value of VEFF is used for the calculation.
	Case() –	Function which handles the case that VEFF cannot be calculated or gets disproportionally high. \rightarrow In these cases ('SD.Initial volume in mL' * 7) is used for calculation, 7 is an empirical value.
	'SD.Initial volur	ne in mL' – Sample data variable which reads out the volume in mL as defined on the Workplace
AREANORM Standardized area of	Abs('RS.CVS.Su - 'ED.Calibration.	<pre>ippressor.VAR{ Round('STANDARD smartDT.ACO' - 1) }.REP{1}.AREANORM' CVS.Suppressor.EVRATIO')</pre>
the latest peak	'RS.CVS.Supp	ressor.VAR{x}.REP{y}.AREANORM' – Result variable which reads out the standardized signal area of a specific curve, specified by variation (VAR{x}) and replication (REP{y}).
	Var{x} –	Variation x of the CVS curves from which the area should be used for calculation, x reflects the addition number.
	*.ACO –	addition counter
	Round() –	Function which is necessary to avoid decimal places in the calculation of the variation.

Application Bulletin 420/2 e

Determination of suppressor with CVS using the calibration technique smartDT with dynamic addition volumes

	REP{1}	Replication 1 of the CVS curves of the respective addition; since there ismostly only a small difference between first and second replication only the firstreplication is considered to keep the formula simpleFunction which handles the case AREANORM < evaluation ratio.
Evaluation ratio	'ED.Calibration.C	CVS.Suppressor.EVRATIO ameter variable for «Evaluation ratio» used in the application
5	5 Empirical factor adapted, if neo additions. Use	or which has an influence on the number of additions. This parameter can be cessary. A smaller value results in fewer additions, a bigger value in more ful values are 3 6.

5.2. Method sequence

END Main track

Determination of suppressor with CVS using the calibration technique smartDT with dynamic addition volumes

5.3. Example determination

Determination Dete User User Meth Sample data Sam, ID 1, ID 2 ID 3 Initial Minir Results overview CVS. CVS 7.5 5.0 4 5.0 4 5.0 4 5.0 4 5.0 4 5.0 4 5.0 4 5.0 4 5.0 4 5.0 4 5.0 5.0 4 5.0 5.0 4 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	minaton start	ation			2015-04	I-14 14:22	:32 UTC+2 Metrohn adquarters 20 smartD ⁻ Sample on smartD ⁻ lard 3 mL/l ressor PEC 0.05 0.03 2.9 4.76 0.2	2 n s T C C C C C C C C C C C C C C C C C C	
Dete User User Meth Sample data Sam ID 1, ID 2 ID 3 Initial Minir Results overview CVS. CVS 7.5 + 0.25	minaton start	ation ation.ASD ation.RSD		Metr	2015-04	-14 14:22 ational He AB 42 AB 42 	:32 UTC+: Metrohn adquarter: 20 smartD ⁻ 20	2 n s T T L 3 3 5 5 7 mL/L 3 4 5 5 7 mL/L 2 2 %	
User User Meth Sample data Sam ID 1, ID 2 ID 3 Initial Minir Results overview CVS. CVS. CVS 7.5 - 5.0 - 5.0 - 2.5 - 0.0 - -2.5 - 0.25	name (short) name od name ole type l volume in mL num volume in mL Suppressor.Concentra Suppressor.Concentra	ation ation.ASD ation.RSD		Metr	rohm Intern	ational He	Metrohn adquarters or smartD ⁻ and 3 mL/l ressor PEC 0.05 0.03 2.97 4.76 0.2	n s T T G G S S S S S S S S S S S S S S S S	
Meth Sample data Sam ID 1, ID 2 ID 3 Initia. Minir Results overview CVS. CVS 7.5 5.0 - 2.5 - 0.25	volume in mL volume in mL volume in mL volume in mL Suppressor.Concentra Suppressor.Concentra Suppressor.Concentra	ation ation.ASD ation.RSD				AB 42 terminatic Stand Suppr	20 smartD . Sample on smartD lard 3 mL/l ressor PEC 0.03 2.97 4.76 0.2	e Γ L 3 5 5 7 mL/L 2 %	
Sample data Sam ID 1, ID 2 ID 3 Initia Minir Results overview CVS. CVS 7.5 - 5.0 - 5.0 - -2.5 - -0.25	volume in mL	ation ation.ASD ation.RSD			De	terminatic		e F L 3 5 5 7 mL/L 6 µL/L 2 %	
Sam, ID 1, ID 2 ID 3 Initia Minir Results overview CVS CVS T.5 + CVS CVS T.5 + CVS CVS CVS CVS T.5 + CVS CVS CVS T.5 + CVS CVS T.5 + CVS CVS T.5 + CVS CVS CVS CVS T.5 + CVS CVS CVS CVS CVS T.5 + CVS CVS CVS CVS CVS T.5 + CVS C	volume in mL	ation			De	eterminatic	Sample on smartD1 lard 3 mL/l ressor PEC 0.05 0.03 2.91 4.76 0.2	e Γ L 3 3 5 7 mL/L 5 μL/L 2 %	
Results overviewCVST.5 $VVVVVVVVVV$	volume in mL	ation ation.ASD ation.RSD				terminatic	on smartD lard 3 mL/l ressor PEC 0.05 0.03 2.97 4.76 0.2	r L 3 5 5 7 mL/L 2 %	
Results overview 7.5 + 5.0 + 5.0 + 5.0 + 0.0	Volume in mL	ation ation.ASD ation.RSD				Supp	essor PEC	2 3 5 7 mL/L 6 μL/L 2 %	
Results overvier CVS 7.5 - 5.0 - 5.0 - 4 2.5 - 0.0 - -2.5 - -0.25	I volume in mL	ation ation.ASD ation.RSD	· · · · · · · · · · · · · · · · · · ·				0.03 2.9 4.76 0.2	9 5 7 mL/L 6 µL/L 2 %	
Minir Results overviet CVS. CVS 7.5 + 100	num volume in mL	ation ation.ASD ation.RSD					0.03 2.9 4.76 0.2	5 7 mL/L 3 µL/L 2 %	
Results overvier CVS CVS 7.5 5.0 2.5 0.0 -2.5 -0.25	N Suppressor.Concentra Suppressor.Concentra Suppressor.Concentra	ation ation.ASD ation.RSD					2.9 4.76 0.2	7 mL/L 5 μL/L 2 %	
$\frac{1}{2.5} = \frac{1}{-0.25}$	Suppressor.Concentra Suppressor.Concentra Suppressor.Concentra Suppressor.Concentra	ation ation ASD ation RSD					2.9 4.76 0.2	7 mL/L 3 µL/L 2 %	
CVS CVS 7.5 - 5.0 - 2.5 - 0.0 - -2.5 - -0.25	Suppressor.Concentra Suppressor.Concentra Suppress	ation.ASD ation.RSD					4.76	3 μL/L 2 %	
CVS 7.5 5.0 5.0 -2.5 -0.25	Suppressor.Concentra	sor					0.2	2 %	
7.5 - 5.0 - 2.5 - 0.0 - -2.5 - -0.25	Suppress	sor							
7.5 - 5.0 - 2.5 - -2.5 - -0.25	Suppres	sor							
5.0 - <u>Y</u> 2.5 - 0.0 - -2.5 - -0.25	×								
5.0 - <u>V</u> 2.5 - 0.0 - -2.5 - -0.25									
₹ <u>2.5</u> 0.0 -2.5 -0.25									
<u>e</u> 2.5 0.0 -2.5 -0.25									
-0.25									
-2.5									
-2.5 -0.25				- 1					
-2.5									
-0.25									
	0.00 0.	.25 0.	50	0.75	1.0	0	1.25	1.50)
CVS (Suppressor)	I			0 [v]					
1.00 -	۰ ۱								
~ 0.75	0	° °	0	° 2	203 070			10	2 86
00			0	0	235.07	0	о		V
ð ^{0.50}					0			•	-0
0.25									
0.00 -									
	0 50 100	0 150	200	250	300	350	400	450	500
	-			V(eff) [µ	μL]				-

Application Bulletin 420/2 e

Determination of suppressor with CVS using the calibration technique smartDT with dynamic addition volumes

Viva	7			Resi pag	ult report je 2 of 3	2015-04-14 Metrohm	15:27:26
Concentration							2 97 ml /l
Absolute standa	rd dev	viation				 	0.00 mL/L
Relative standar		intion				 	0.00 mbz
Relative standar	a aev	lation .				 	0.2 %
Function		• • • •	• • • • • • • • • • • • •	• • • • • • • •		 y = 1.281E0 - 1	1.584E3 * x
Evaluation quan	tity .					 	Area
Curve type						 Linear ii	nterpolation
Weighting						 	used
Calibration facto	r					 	29.14 µL/L
Date calibration						 15-04-14 09:58	:55 UTC+2
Determination ID) calib	oration				 a3a8:14cb190	4d3e:-78a0
CALL	Var	Rep	Peak potential [V]	Area [mC]	Used		
CALL VMS		1	0.177	3.15	used		
CALL VMS		2	0.177	3.15	used		
CALL SAMPLE	1	1	0.178	2.92	used		
CALL SAMPLE	1	2	0.177	2.82	used		

used

0.178

0.178

0.179

0.179

0.180

0.180

0.181

0.181

0.182

0.182

0.182

0.182

0.182

0.182

1

2

1

2

1

2

1

2

1

2

1

2

1

2

2.66

2.67

2.55

2.54

2.32

2.32

2.10

2.10

1.90

1.90

1.69

1.69

1.50

1.50

CALL SAMPLE 2

CALL SAMPLE 2

CALL SAMPLE 3

CALL SAMPLE 3

CALL SAMPLE 4

CALL SAMPLE 4

CALL SAMPLE 5

CALL SAMPLE 5

CALL SAMPLE 6

CALL SAMPLE 6

CALL SAMPLE 7

CALL SAMPLE 7

CALL SAMPLE 8

CALL SAMPLE 8

Determination of suppressor with CVS using the calibration technique smartDT with dynamic addition volumes

VIL	<i>i</i> a	page 3 of 3	Metrohm	
Messages				
5	Main track - CALL COND			
	Message date		14 14:29:28 UTC+2	
	Message title	c	Command canceled	
	Message text C	ommand 'CALL COND': The 'Evalu defined in the command has been r ł	uation quantity' stop met. The command has been canceled.	
	DT Determination - DOC volume sma	artDT sample		
	Message date		14 14:31:37 UTC+2	
	Message text		volume 1: 0.09 mL	
	DT Determination - DOC volume sma	artDT sample		
	Message date		14 14:33:44 UTC+2	
	Message title			
		Addition v	/olume 2: 0.077 mL	
	DT Determination - DOC volume sma	artDT sample		
	Message date		14 14:35:52 UTC+2	
	Message title			
	Message text	Addition v	/olume 3: 0.075 mL	
	DT Determination - DOC volume sma	artDT sample		
	Message date		14 14:37:59 UTC+2	
			Volume 4. 0.074 mL	
	DT Determination - DOC volume sma	artDT sample		
	Message date		14 14:40:06 UTC+2	
	Message text	Addition v	volume 5: 0.061 mL	
	DT Determination - DOC volume sma	artDT sample		
			14 14:42:13 UTC+2	
	Message text	Addition v	/olume 6: 0.052 mL	
		(FT)		
	DI Determination - DOC volume sma			
	Message title		14 14.44.20 010+2	
	Message text		/olume 7: 0.045 mL	
	PT Determination DOC volume and	ortDT comple		
	Message date	2015-04-1	14 14·46·26 UTC+2	
	Message title			
	Message text		volume 8: 0.039 mL	
	DT Determination - Sample addition			
	Message date	2015-04-1	14 14:48:30 UTC+2	
	Message title		Command canceled	
	Message text Comman	nd 'Sample addition': The defined st	top criterion 'Signal	
	asses	ssment for DT' has been met with th	he value '0.48'. The	

