Application Bulletin 317/2 e

Determination of iron in the µg/L-range by polarography

Summary

This Application Bulletin describes two methods for the determination of iron at the Multi-Mode Electrode.

Method 1, the polarographic determination at the DME, is recommended for concentrations of $\beta(Fe) > 200 \ \mu g/L$. For this method the linear range is up to $\beta(Fe) = 800 \ \mu g/L$.

For concentrations < 200 μ g/L method 2, the voltammetric determination at the HMDE, is to be preferred. The detection limit for this method is β (Fe) = 2 μ g/L, the limit of quantification is β (Fe) = 6 μ g/L. The sensitivity of the method cannot be increased by deposition.

 $\ensuremath{\mathsf{Iron}}(\ensuremath{\mathsf{II}})$ and $\ensuremath{\mathsf{iron}}(\ensuremath{\mathsf{III}})$ have the same sensitivity for both methods

These methods have been elaborated for the determination of iron in water samples. For water samples with high calcium and magnesium concentrations such as, for example, seawater, a slightly modified electrolyte is used in order to prevent precipitation of the corresponding metal hydroxides. The methods can also be used for samples with organic loading (wastewater, beverages, biological fluids, pharmaceutical or crude oil products) after appropriate digestion.

Instruments

VA instrument	
capable of operating a Multi-Mode	
Electrode and supporting differential pulse	
(DP) measuring mode	
909 UV Digester	2.909.0014

Electrodes

WE	Multi-Mode Electrode pro	6.1246.120
	Mercury drop capillary	6.1226.030
RE	Ag/AgCl reference electrode Ag/AgCl/KCl (3 mol/L) Electrolyte vessel Filled with c(KCl) = 3 mol/L	6.0728.x20 6.1245.010
AE	Pt rod electrode	6.0343.x00

Reagents

All of the used reagents must be of purest quality possible (for analysis or for trace analysis*).

- Sodium hydroxide, w(NaOH) = 30%, for trace analysis*, CAS 12200-64-5
- Triethanolamine, w(C₆H₁₅NO₃) ≥ 98%, for analysis, CAS 102-71-6
- Potassium bromate, KBrO₃, for analysis, CAS 7758-01-2
- Fe³⁺ standard stock solution, β(Fe³⁺) = 1 g/L (commercially available)
- Nitric acid, w(HNO₃) = 65%, for trace analysis*, CAS 7697-37-2
- Citric acid monohydrate, C₆H₈O₇ · H₂O, for trace analysis*, CAS 5949-29-1
- Ultrapure water, resistivity >18 MΩ·cm (25 °C), type I grade (ASTM D1193)

 * e.g., Merck suprapur^®, Honeywell Fluka TraceSelect^ $^{\mathbb{R}}$ or equivalent

Solutions

Supporting	c(NaOH) = 0.3 mol/L
electrolyte	c(KBrO ₃) = 0.1 mol/L
	c(TEA) = 0.05 mol/L
	0.373 g triethanolamine, 0.835 g
	KBrO₃ and 1.5 mL NaOH are
	dissolved in approx. 40 mL
	ultrapure water in a 50 mL
	volumetric flask. After cooling to
	room temperature the solution is
	made up to the mark with
	ultrapure water.

Standard solutions

Fe standard	$\beta(Fe^{3+}) = 10 \text{ mg/L}$
solution	1.0 mL Fe ³⁺ standard stock
	solution (1 g/L) and 0.1 mL HNO $_3$
	(65%) are transferred to a 100 mL
	volumetric flask and made up to
	the mark with ultrapure water.

Sample preparation

• Tap water, surface waters, mineral waters and drinking waters can usually be analyzed without pretreatment.

Organic matter often interferes with voltammetric determinations and therefore sample solutions usually have to be digested.

- Low polluted waste waters can be digested with the 909 UV Digester.
 - Add 50 100 µL hydrogen peroxide w(H₂O₂) = 30% to 10 mL acidified samples (pH = 2). The quartz tubes are irradiated for 90 min at 90 °C. After cooling to room temperature, the digested samples can be transferred directly to the polarographic vessel. The blank value of this digestion is relatively small.
- Filters, filter residues and samples with organic matter (foods, pharmaceutics etc.) must be digested.
 - o High-pressure asher
 - o Microwave digestion

Both techniques oxidize the samples in a closed digestion vessel by means of a mixture of concentrated mineral acids.

• According to Application Bulletin113, open wet digestion with H₂SO₄ and H₂O₂.

Method 1: Polarographic determination for Fe concentrations > 200 µg/L

Summary

Triethanolamine forms a complex with iron. The formation of this complex prevents the precipitation of iron in the alkaline electrolyte used. The signal obtained during the measurement shows the reduction of iron(III) to iron(II).

$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$

The potassium bromate contained in the supporting electrolyte then oxidizes Fe^{2+} back to Fe^{3+} , which means that it is again available for reduction. In this way a much higher iron concentration is simulated than is actually present. This catalytic enhancement leads to considerably larger signals.

This method is suitable for samples with iron concentrations above 200 μ g/L. Method 2 is recommended for samples with lower iron concentrations; this is described later.

Analysis

Measuring solution

10 mL sample

2 mL supporting electrolyte

The pH of the measuring solution should be pH = $12 \dots 12.4$.

i arameters

Voltammetric	
Electrode operating mode	DME
Measuring mode	DP – Differential pulse
Stirring rate	2000 min ⁻¹
Equilibration time	5 s
Sweep	
Start potential	-0.7 V
End potential	-1.25 V
Potential step	0.006 V
Potential step time	0.5 s
Sweep rate	0.012 V/s
Pulse amplitude	0.05 V
Substance	
Name	Fe
Characteristic potential	-0.96 V

Example

Result

Sample	Tap water (spiked)
Sample size	10 mL
β(Fe)	226 µg/L

Comments

- Detection limit: $\beta(Fe) = 5 \mu g/L$
- Limit of quantification: $\beta(Fe) = 15 \mu g/L$.
- Linear range: up to 800 µg/L
- For higher iron concentrations it is possible to prepare the supporting electrolyte without potassium bromate. This avoids the catalytic enhancement with the result that the sensitivity of the determination is reduced by a factor of about 40.
- Under the measuring conditions given above a signal is obtained for both Fe²⁺ and Fe³⁺ at -0.96 V. The sensitivity of the two oxidation states is comparable.

Method 2: Voltammetric determination for Fe concentrations < 200 µg/L

Summary

Triethanolamine forms a complex with iron. The formation of this complex prevents the precipitation of iron in the alkaline electrolyte used. The signal obtained during the measurement shows the reduction of iron(III) to iron(II).

$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$

The potassium bromate contained in the supporting electrolyte then oxidizes Fe^{2+} back to Fe^{3+} , which means that it is again available for reduction. In this way a much higher iron concentration is simulated than is actually present. This catalytic enhancement leads to considerably larger signals.

As this method is a direct voltammetric determination and not an adsorptive stripping voltammetry method, increasing the sensitivity by deposition of Fe triethanolamine complex and subsequent stripping is not possible.

This method is suitable for samples with iron concentrations up to 200 μ g/L. Method 1 in this Application Bulletin is recommended for samples with higher iron concentrations.

Analysis

Measuring solution

10 mL (diluted) sample

2 mL supporting electrolyte

The pH of the measuring solution should be $pH = 12 \dots 12.4$.

Parameters

Voltammetric	
Electrode operating mode	HMDE
Measuring mode	DP – Differential pulse
Stirring rate	2000 min ⁻¹
Equilibration time	5 s
Sweep	
Start potential	-0.7 V
End potential	-1.25 V
Potential step	0.006 V
Potential step time	0.5 s
Sweep rate	0.012 V/s
Pulse amplitude	0.05 V
Pulse time	S
Substance	

Name	Fe
Characteristic potential	-0.96 V

Example

Result

Sample	Tap water
Sample size	10.0 mL
Reagent blank $\beta(Fe)$	3.5 μg/L
Measuring result $\beta(Fe)$	13.3 µg/L
Result – blank $\beta(Fe)$	9.8 µg/L

Comments

• As both triethanolamine and potassium bromate are contaminated with iron it is essential to determine a blank value for the reagents.

- When measuring the blank value a shoulder appears on the iron signal at approx. -0.8 V. After the addition of a foreign ion (e.g. Pb²⁺) this shoulder disappears again.
- Detection limit: $\beta(Fe) = 2 \mu g/L$
- Limit of quantification: $\beta(Fe) = 6 \mu g/L$.
- Linear range: up to 200 µg/L
- For higher iron concentrations it is possible to prepare the supporting electrolyte without potassium bromate. This avoids the catalytic enhancement with the result that the sensitivity of the determination is reduced by a factor of about 40.

Determination of seawater

Because of the increased concentrations of calcium and magnesium ions a modified supporting electrolyte must be used for seawater:

Supporting	c(NaOH) = 5 mol/L
electrolyte for	c(citric acid) = 1.56 mol/L
seawater	$c(KBrO_3) = 0.1 mol/L$
	c(TEA) = 0.05 mol/L
	16.4 g citric acid monohydrate are
	dissolved in 15 mL ultrapure water
	in a 50 mL volumetric flask. 25 mL
	NaOH, 0.373 g triethanolamine
	and 0.835 g KBrO $_3$ are added.
	After cooling to room temperature
	the solution is made up to the
	mark with ultrapure water.
	Caution: the solution becomes
	very hot!

The citrate contained in the solution complexes the calcium and magnesium ions present. The pH of the measuring solution must be between 12.0 and 12.4 in order to obtain usable signals. If the pH is too low no signal can be measured. If the pH is above 12.4 then calcium and magnesium precipitate as hydroxides.

Measuring solution

10 mL seawater sample

2 mL supporting electrolyte for seawater

The pH of the measuring solution should be $pH = 12 \dots 12.4$. This modified electrolyte can be used for both method 1 and method 2.

Interferences from other metal ions

Possible interferences to the peak of $\beta(Fe^{3+}) = 100 \ \mu g/L$ have been investigated for the following ions under the measuring conditions given for method 2. If nothing to the contrary is mentioned, tests have been carried out at an excess of 200:1.

Element	Remarks
Al ³⁺	No interference
Bi ³⁺	No interference, peak at -0.64 V, tested up to 600:1
Cd ²⁺	No interference, peak at -0.68 V, tested up to 500:1
Co ²⁺	No interference
Cr ³⁺	No interference
Cr ⁶⁺	Interference by peak at -1.0 V
Cu ²⁺	No interference, tested up to 500:1
In ³⁺	No interference up to a ratio of 10:1. At concentrations $\beta(\ln^{3+}) >$ 1 mg/L interference by a peak at -1.0 V and a further peak at -1.25 V is observed.
Mn ²⁺	From a concentration of β (Mn ²⁺) = 20 mg/L signals occur at -0.12 V; -0.29 V, interference by peak at -1.2 V.
Ni ²⁺	No interference
Pb ²⁺	No interference, peak at -0.67 V
Sb ³⁺	No interference
Sb ⁵⁺	No interference. peak at -0.12 V
Se ⁴⁺	No interference
Se ⁶⁺	No interference

Sn ²⁺	No interference
Sn ⁴⁺	No interference
Zn ²⁺	No interference, peak at -1.38 V, tested up to 1000:1
Li ⁺	No interference
K ⁺	No interference
Ca ²⁺	No interference, precipitate from approx. $\beta(Ca^{2+}) = 20 \text{ mg/L} \rightarrow \text{electrolyte for seawater}$
Mg ²⁺	No interference, precipitate from approx. $\beta(Mg^{2+}) = 0.1 \text{ g/L} \rightarrow \text{electrolyte for seawater}$
Na⁺	No interference

Interference from non-metals

Element	Remarks
Cl⁻	No interference
F	No interference
NO ₂ ⁻	No interference
NO ₃ ⁻	No interference
PO4 ³⁻	No interference
SO4 ²⁻	No interference

References

 Henze, Neeb: "Elektrochemische Analytik, Springer Verlag 1986, p. 184 ff

Appendix

Report for the example determination iron in tap water according to method 1

===== MET Determinati	ROHM 797 VA .on : 09011	COMPUTR 91649_ta	ACE (Versi p water +	on 1.3.1.8 200 ppb Fe	4) (Serial .dth	No. 519	5) =======
Sample ID Creator met	: tap v	vater + 2	00 ppb Fe	: 2008-11-	.14	Time:	11:11:06
Creator det	erm.: mk		Date	: 2009-01-	19	Time:	16:49:30
Modified by	• :		Date	: 2009-05-	26	Time:	09:25:17
Method	: Recov	ery.mth	c –				
Title Remark1	: Deter	mination	of Fe (T	EA method) trolvte (0	0.5M TEA 0	1 M K Br	-ОЗ 0 ЗМ МЭОН)
Remark2	: + 200	µL addi	tion (10 p	pm Fe3+)		. 10 KD1	05, 0.5M Na011)
Cell volume	e : 12.0	00 mL					
Substance	: Fe						
Conc.	: 188.:	22 ug/L	(1 26	۹)			
Amount	: 2.2	160 ug	(1.20	0)			
Add.amount	: 2.0	00 ug					
VR V	nA	I.mean	Std.Dev.	I.delta	Comments		
1 - 1 -0.9	62 -230.6	-230.2	0.497	0.0			
1 - 2 - 0.9	62 -229.9	101 1	1 0 0 7	200 0			
2 = 1 = 0.9 2 = 2 = 0.9	62 - 429.8	-431.1	1.827	-200.8			
3 - 1 -0.9	62 -614.6	-615.0	0.573	-183.9			
3 - 2 -0.9	62 -615.4						
Substance	Calibr.	Y.re	g/offset	Slop	e Mean devi	at. Cor	r.Coeff.
 Fe	std.add.	-2.	 307e-007	 -1.225e-00	3.482e-	009	0.99987
Solutions							
No. Contor	. L				Duedees	(T)	
NO. CONLER	IL 				Predose	(III)	
1 10 ppm	ı Fe3+						
Final resul	.ts		+/	- Res. dev 	r. % C	omments	
Fe:	,			0.4.6	1 050		
re	= 2	25.980	ug/L 2.	840	1.259		
Method print	for the deter	mination	of iron acco	ordina to m	ethod 1 (Fe :	> 200 ua	/L)
Method para	meters						
Method	: AB317	' 1 Det o	f Fe DME.m	 th			
Title	: Deter	mination	of Fe (T	EA method)			
Remark1	: 10 mI	sample	+ 2 mL ele	ctrolyte			
Remark2	• Elect	.roiyte (U.USM TEA,	U.IM KBrC	os, u.3M NaC	n)	
Calibration	: Stand	lard addi	tion				
Technique	: Batch	1					
Addition	• Manua	LT					
Sample ID	: Sampl	e					
Sample amour	t (mL): 10.	000					
CETT VOTUME	(шь)• ±2.00						
Voltammetric	parameters	5					

Mode: DP - Differential PulseHighest current range: 10 mALowest current range: 100 nAElectrode: DME

Determination of iron in the μ g/L-range by polarography

Stirrer sp	peed (rpm)		:	2000			
Initial el Standard d	lectr. condi- leviation	tioning	:	Yes 0.50	00		
No. of add No. of rep	litions plications		:	2 2			
Measure bl Addition p	lank purge time (;	s)	:	N0 60			
Initial pu	urge time (s)	:		300		
Sweep Equilibrat Start pote End potent Voltage st Sweep rate Pulse ampl Pulse time	tion time (s ential (V) tial (V) cep (V) cep time (s) e (V/s) Litude (V) e (s))		5 -0 -1 0 0 0	.000 .700 .250 .006 .500 .012 .050 .040		
Cell off a	after measur	ement	:		Yes		
Peak evalu	ation						
Regression Peak evalu Minimum pe Minimum pe Reverse pe Smooth fac Eliminate	n technique lation eak width (V eak height () eaks stor spikes	.steps) A)	: : : : : : :	Linea Heigh 5 1.000 No 4 Yes	ar Regre nt)e-010	ssion	
Substances	5						
Fe		: -	1.000 V	+/-	0.100 V		
Standard s Addition v	solution volume (mL)	: 1 : 0	10.00 .200	0 mg/I	_		
default		: F C	inal res onc * (1	ult (H 2 / 10	Te) =)) * (1e	+006 / 1) +	0 – 0
Baseline							
Substance	Addition	automa	tic star	t (V)	end (V)	type	scope
Fe	Sample Addition 1 Addition 2	yes yes yes	 		 	linear linear linear	wholePeak wholePeak wholePeak

Report for the example determination iron in tap water according to method 2

====== METROHM 797 VA COMPUTRACE (Version 1.3.1.84) (Serial No. 3150) ======= Determination : 0811241617_tap water + 10 ppb Fe.dth Sample ID : tap water + 10 ppb Fe Creator method : mk Date : 2008-11-14 Time: 11:11:06 Creator determ.: mk Date : 2008-11-24 Time: 16:17:06 Modified by : ---Date : Time: : Recovery.mth : Determination of Fe (TEA method) : 10 mL sample + 2 mL electrolyte (0.05M TEA, 0.1M KBrO3, 0.3M N Method Title Remark1 aOH) Remark2 : + 25 µL addition (10 ppm Fe3+) _____ Sample amount : 10.000 mL Cell volume : 12.100 mL ____ Substance : Fe : 10.957 ug/L : 0.819 ug/L Conc. Conc.dev. (7.47%) : 132.584 ng : 250.000 ng Amount Add.amount VR V nA I.mean Std.Dev. I.delta Comments ____ ____ ----_____ -4.86 -4.89 $\begin{array}{rrrr} 1 & - & 1 & -0.950 \\ 1 & - & 2 & -0.950 \end{array}$ -4.87 0.020 0.00 2 - 1 -0.950 -13.38 -13.85 0.664 -8.97

2	-	2	-0.950	-14.32			
3	-	1	-0.950	-23.12	-23.07	0.066	-9.22
3	-	2	-0.950	-23.02			

Substance	Calibr.	Y.reg/off	set	Slope Mean	deviat. Com	rr.Coeff.
Fe	std.add.	-4.836e-	009 -4.413	e-004 5.3	84e-010	0.99929
Solutions						
No. Content	:			Pre	dose (mL)	
1 10 ppm	Fe3+			0.0	10	
Final result			+/- Res.	dev. %	Comments	3
Fe: default	=	13.258 ug/L	0.991	7.471		

Method print for the determination of iron according to method 2 (Fe < 200 $\mu g/L)$

Method parameter	 rs					
Method Title Remark1 Remark2	AB317_2 Det of Fe_HMDE.mth Determination of Fe (TEA method) 10 mL sample + 2 mL electrolyte Electrolyte (0.05M TEA, 0.1M KBrO3, 0.3M NaOH)					
Calibration Technique Addition	Standard addition Batch Manual					
Sample ID Sample amount (mi Cell volume (mL)	: Sample L): 10.000 : 12.000					
Voltammetric para	ameters					
Mode		: DP - Differential Pulse				
Highest current : Lowest current ra	range ange	: 10 mA : 100 nA				
Electrode Drop size (19) Stirrer speed (r	pm)	: HMDE : 4 : 2000				
Initial electr. o Standard deviatio	conditioning on	: Yes : 0.50 %				
No. of additions No. of replication	ons	: 2 : 2				
Measure blank Addition purge t	ime (s)	: No : 60				
Initial purge tim	me (s)	: 300				
Conditioning cyc. Start potential End potential (V No. of cycles	les (V))	$\begin{array}{ccc} & -1.200 \\ \vdots & -0.100 \\ \vdots & & 0 \end{array}$				
Hydrodynamic (me: Cleaning potentia Cleaning time (s Deposition potent Deposition time	asurement) al (V)) tial (V) (s)	: No : -0.100 : 0.000 : 0.000 : 0.000				
Sweep Equilibration tin Start potential End potential (V Voltage step (V) Voltage step tim Sweep rate (V/s)	me (s) (V)) e (s)	$\begin{array}{llllllllllllllllllllllllllllllllllll$				

Pulse amp Pulse time	litude (V) e (s)		: ().050).040		
Cell off a	after measur	ement	:	Yes		
Peak evalu	uation					
Regression Peak evalu Minimum pe Minimum pe Reverse pe Smooth fac Eliminate	n technique Lation eak width (V eak height (L eaks ctor spikes	.steps) A)	: Line : Heig : 5 : 1.00 : No : 4 : Yes	ear Regre ght 00e-010	sion	
Substances	5					
Fe		: -1.0	00 V +/-	- 0.100 V		
Standard s Addition v	solution volume (mL)	: 1 : 0.02	10.000 mg/ 5	'L		
default		: Fina Conc	l result (* (12 / 1	Fe) = 0) * (1e	+006 / 1) +	0 – 0
Baseline						
Substance	Addition	automatic	start (V)	end (V)	type	scope
Fe	Sample Addition 1 Addition 2	yes yes yes		 	linear linear linear	wholePeak wholePeak wholePeak
