Application Bulletin 307/2 e Determination of sulfate in granular phosphate fertilizers with thermometric titration Page 1/4

Determination of sulfate in granular phosphate fertilizers with thermometric titration

Of interest to: Fertilizer industry

Summary

Sulfate may be rapidly and easily titrated thermometrically using a standard solution of Ba²⁺ as titrant. Industrially, the procedure has been applied to the determination of sulfate in wet process phosphoric acid, where it has proven to be quite popular. This bulletin deals with the determination of sulfate in granular fertilizers such as MAP (mono-ammonium phosphate), DAP (di-ammonium phosphate) and TSP (triple superphosphate). Results are reported as percentage of elemental sulfure, %S.

Introduction

In a titration, the titrant reacts with the analyte in the sample either exothermically (gives out heat) or endothermically (takes in heat). The Thermoprobe measures the temperature of the titrating solution. When all of the analyte in the sample has reacted with the titrant, the temperature of the solution will change, and the endpoint of the titration is revealed by an inflection in the temperature curve.

The amount of analyte determined is not related to the change in temperature of the solution. Therefore, it is not necessary to use insulated titration vessels.

Theory

Thermometric titrations are conducted under conditions of constant titrant addition rate. In this respect they differ from potentiometric titrations, where the titrant addition rate may be varied during the titration according to the electrode response. In thermometric titrations, a constant addition rate of titrant equates to a constant amount of heat being given out or consumed, and hence a more or less constant temperature change up to the endpoint.

Apparatus and accessories

1 x 2.859.1010	859 Titrotherm (1 Dosino and 1 10 mL
Dosing unit included)	
2 x 2.800.0010	800 Dosino
1 x 6.3032.210	Dosing unit 10 mL
1 x 6.3032.250	Dosing unit 50 mL
1 x 6.1543.210	3-way stopper with antidiffusion tip
1 x 6.1446.000	3 x SGJ stoppers
1 x 6.2061.010	Reagent organizer
1 x 6.2026.010	Support rod with stand
1 x 6.2065.000	Stacking frame

Reagents

Solvent: deionized water Diluent: c(HCI) = 0.1 mol/L Standard: $Na_2SO_4 \text{ p.a.}$

Reaction solution: conc. HCl Titrant: $c(BaCl_2) = 1 mol/L$

Samples

From Company "A"
MAP 1-A
MAP 2-A
DAP 1-A

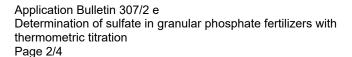
From Company "B" MAP 1-B MAP 2-B TSP 1-B

Calculations

Titer BaCl₂ with Na₂SO₄

If a liquid primary standard is used, dose aliquots directly into the titration vessel. Set up an regression plot with the sample size on the x-axis and mL of titrant consumed on the y-axis. The plot will be a linear curve of the form y = a * x + b, where the molarity of the titrant is calculated from the slope (a) with the following formula: (slope)-1 * c(standard solution)

Reaction: Na₂SO₄ + BaCl₂ → BaSO₄ + 2NaCl


Calculation of titer in tiamo™

Assignment	RS name	Formula
RS01	EP	TET1.EP(1).VOL'
RS02	Slope	'RS.EP.SLO'
RS03	Intercept	'RS.EP.ITC'
RS04	Correlation (R ²)	'RS.EP.COR*'RS.EP.COR'
RS05	Molarity [mol/L] of titrant	(1/'RS.EP.SLO')*'Na ₂ SO ₄ '.CONC'
RS06	Titer of titrant	(1/,RS.EP.SLO')*'Na ₂ SO ₄ '.CONC'/ TET1.CONC'
RS07	Filter factor	MV.filter factor'

Method blank

The method blank is determined by titrating a number of analyte solutions of different concentrations and plotting the analyte concentration against the titrant consumption. The method blank is determined as the y-intercept from a linear regression of the titration data. Changes in method parameters will require a new determination of method blank.

This parameter is stored along with the other method parameters. For all determinations it is subtracted from the volume of titrant.

Calculation of method blank in tiamo™

Assignment	RS name	Formula
RS01	EP	TET1.EP(1).VOL'
RS02	Slope	'RS.EP.SLO'
RS03	Intercept [mL]	'RS.EP.ITC'
RS04	Correlation (R ²)	'RS.EP.COR*'RS.EP.COR'
RS07	Filter factor	'MV.filter factor'

Calculation of sulfate determination in tiamo™

Assignment	RS name	Formula
RS01	EP	TET1.EP(1).VOL'
RS07	filter factor	MV.filter factor'
RS08		('TET1.EP(1).VOL'-'CV.blank')* 'TET1.CONC'*TET1.TITER'* 'MV.S'*0.1/'MV.sample size
RS09	Blank [mL]	'CV.blank'

Legend formula

'TET1.EP(1).VOL' = Thermometric titration endpoint

volume = result

RS FP = endpoint 'RS.EP.SLO' = slope for linear regression

'RS.EP.ITC' = Intercept for linear regression 'RS.EP.COR*'RS.EP.COR' = correlation coefficient (R2) 'MV.filter factor' = Titration parameter (smoothing

factor)

= method blank in mL CV.blank' 'Na₂SO₄'.CONC' = concentration of standard Solution (0.5 mol/L)

'TET1.CONC' = Concentration of the titrant

(1 mol/L)

'TET1.TITER' = titer of the titrant = sample size in g 'MV.sample size' 'MW.Na₂SO₄' = 142.04 g/mol = 32.065 g/mol 'MW.S'

0.1 = factor for conversion in %

Method

Procedure for titer determination:

Dry anhydrous A.R. Na₂SO₄ for 2 hours at 200°C. Cool in a dessicator.

If a 10 mL Dosino is available for the purpose, a 0.5 mol/L Na₂SO₄ solution can be made up and a program set up to automatically dispense aliquots in the range 2 - 9 mL $(1 - 4.5 \text{ mmol SO}_4^{2-})$. Pipette or dose up to 30 mL 0.1 mol/L HCl and start the titration. The results are being additionally regressed against the sample size. In this application the molarity of the titrant BaCl2 represents the titer which is automatically saved. The titer will be calculated automatically with the formula "Calculation of titer *tiamo*™".

Procedure for method blank determination:

A method blank for the type of sample under examination is determined by titrating a range of aliquot sizes, and calculating the y-intercept (in mL) of a regression curve formed by plotting aliquot size (xaxis) against mL of titrant delivery (y-axis). This will be done automatically in $tiamo^{TM}$.

Weigh accurately a range of sample masses, from approximately 1 to 5 g directly into the titration vessels. Add 1 mL conc. HCl for each g of sample, and heat on a moderate hot plate until all sample has dissolved. Cool on a water bath.

Add 30 mL deionized water and titrate to a single thermometric endpoint.

The method blank is automatically calculated with the formula "Calculation of method blank tiamoTM". The intercept in mL, which represents the method blank, will be saved as a common variable. This blank has to be subtracted from each further analyzed sample.

Titration Parameters

	Titer deter- mination	Blank determina- tion	Samples
Stirring rate	10	10	10
Start volume [mL]	0	0.1	0.1
Pause [s]	20	60	120
Switch off autom.	yes	yes	yes
Dosing rate [mL/min]	6	6	6
Filter factor	30	40	40
Damping until [mL]	0.5	0.5	0.8
Stop volume [mL]	5.0	3.5	4.0
Stop slope	<0.06	off	off
Add. volume after stop [mL]	0.7	off	off
Evaluation start [mL]	0.5	0.5	0.5
End points [Reaction type]	ex*	ex*	ex*
EP criterion [ERC]	-40	-20	-12

^{*} exothermic

Sample preparation for titer, blank and sample

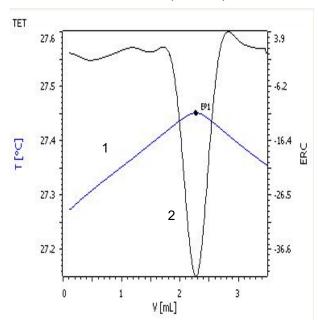
	Titer determi- nation	Blank determina- tion	Sample determination
0.5 mol/L Na ₂ SO ₄ [mL]	2 - 9	-	1
0.1 mol/L HCl diluent for stand- ardization [mL]	to 30	-	ı
Solvent (conc. HCI) [mL]	-	1 mL/g MAP sample	1 mL/g MAP sample 5 mL/3 g DAP sample
Diluent (deionized water) [mL]	-	30	to 30
Sample size in gram (fertilizer)	-	MAP 2-B = 1 - 5	MAP A = 3 MAP B = 4 DAP A = 3 TSP = 3
Number of deter- mination (n =)	3 - 5	3 - 5	3 - 5

Application Bulletin 307/2 e Determination of sulfate in granular phosphate fertilizers with thermometric titration Page 3/4

Procedure for sample preparation

- 1. MAP samples. Weigh accurately approximately 3 g sample directly into the titration vessel. Add 3 mL conc. HCl, and place on moderately heated hot plate. Equip vessel with a short stem funnel to act as splash trap. Heat until the sample is dissolved. Wash funnel with minimum deionized water and cool on a water bath. Make volume to 30 mL with deionized water and titrate with standard 1 mol/L BaCl₂ to a single thermometric endpoint.
- DAP samples. Weigh accurately approximately 3 g sample directly into the titration vessel. Add 5 mL conc. HCl and process as for MAP samples.
- 3. TSP samples. Weigh accurately approximately 3 g of sample, and treat with 3 mL conc. HCl and 1 mL deionized water. Heat to a gentle boil and hold for 5 minutes. Treat sample as for MAP and DAP. The sulfate content of the sample in % S is automatically calculated with the formula "Calculation of sulfate determination *tiamo*TM".

Note: Adjust sample mass to give an endpoint volume of \sim 2 mL in the case of MAP and DAP and \sim 1 mL in the case of TSP.


Results (titer and blank)

	Titer BaCl₂	Blank (on MAP 2-B)
Slope	0.4611	•
Intercept [mL]	0.1159	0.1465
Correlation (R ²)	1.0000	1.0000
Molarity [mol/L]	1.0852	•
Filter factor	30	40
Titer	1.0852	-

Results

Sample designation	% S
MAP 1-A	2.45, 2.45, 2.45 mean = 2.45
MAP 2-A	2.19, 2.19, 2.18 mean = 2.19
DAP 1-A	2.45, 2.46, 2.45 mean = 2.45
MAP 1-B	1.45, 1.46, 1.46 mean = 1.46
MAP 2-B	1.66, 1.66, 1.66 mean = 1.66
TSP 1-B	1.06, 1.07, 1.07 mean = 1.07

Thermometric Titration Plot (MAP 1-A)

Legend:

1 = solution temperature curve

2 = second derivative curve (for endpoints)