Application Bulletin 220/4 e

Determination of platinum and rhodium in the ultratrace range by adsorptive stripping voltammetry

Summary

This Application Bulletin describes an analytical method for the determination of traces of Pt and Rh in the ng/L range by adsorptive stripping voltammetry. Interest in the determination of even minute quantities of platinum and rhodium in environmental materials has greatly increased in recent years. Their emission into the environment from automobile exhaust gas catalytic converters is of great interest. The same applies to the determination of platinum in body fluids and tissue samples following chemotherapeutic treatment for cancer.

Using the hanging mercury drop electrode (HMDE) and the DP (Differential Pulse) measuring mode, determination limits of approx. 0.1 ng/L Pt and 0.5 ng/L Rh can be achieved.

Instruments

VA instrument	
capable of operating a Multi-Mode	
Electrode and supporting differential	
pulse (DP) measuring mode	
909 UV Digester	2.909.0014

Electrodes

WE	Multi-Mode Electrode pro Mercury drop capillary	6.1246.120 6.1226.050
RE	Ag/AgCl reference electrode Ag/AgCl/KCl (3 mol/L)	6.0728.x20
	Electrolyte vessel Filled with c(KCl) = 3 mol/L	6.1245.010
AE	Glassy Carbon rod Electrode holder	6.1247.000 6.1241.x20

Sample preparation

The determinations described are extremely sensitive to interference by organic substances, which is why all samples (even drinking water) must undergo digestion.

Water, aqueous solutions

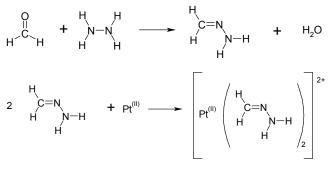
In this case UV digestion (irradiation with UV light) has proved to be best.

10 mL sample is acidified with 10 μ L w(HCI) = 30% (for trace analysis*) (approx. pH = 2), 50 μ L w(H₂O₂) = 30% (for trace analysis*) is added and the solution irradiated in the 909 UV Digester for 90 min. After cooling down the digestion solution can be used directly for the voltammetric determination

Biological materials

There are two suitable digestion methods for materials with a high organic content:

- High-pressure ashing («High-Pressure Asher», HPA)
- Microwave digestion


In both cases the sample is oxidized in sealed digestion vessels by a mixture of concentrated acids. The vessels are either heated conventionally (HPA) or by microwave irradiation.

* e.g., Merck suprapur[®], Honeywell Fluka TraceSelect[®] or equivalent

Method 1: Determination of platinum

Summary

Formaldehyde and hydrazine can be condensed to form the corresponding hydrazone, which forms a complex with Pt(II):

Determination of platinum and rhodium in the ultratrace range by adsorptive stripping voltammetry

This complex is adsorbed on the surface of the HMDE, where it reduces the hydrogen overpotential. The measured signal of the hydrogen reduction is proportional to the concentration of the Pt complex. Owing to the catalytic effect of platinum the determination is extremely sensitive.

Reagents

All of the used reagents must be of purest quality possible (for analysis or for trace analysis*).

- Sulfuric acid, w(H₂SO₄) = 96%, for trace analysis*, CAS 7664-93-9
- Formaldehyde solution, w(HCHO) = 37%, CAS 50-00-0
- Hydrazine sulfate $N_2H_6SO_4,$ for trace analysis*, CAS 10034-93-2
- Pt(IV) stock solution, β(Pt(IV)) = 1 g/L, commercially available
- Ultrapure water, resistivity >18 MΩ·cm (25 °C), type I grade (ASTM D1193)

 * e.g., Merck suprapur^8, Honeywell Fluka TraceSelect^8 or equivalent

Solutions

Hydrazine sulfate solution	$c(N_2H_6SO_4) = 0.1 \text{ mol/L}$ 0.13 g hydrazine sulfate is dissolved in 10 mL ultrapure water. This solution is stable for max. 1 week.
Electrolyte	c(H ₂ SO ₄) = 0.72 mol/L c(HCHO) = $6.7 \cdot 10^{-3}$ mol/L c(N ₂ H ₆ SO ₄) = $3 \cdot 10^{-3}$ mol/L Approx. 15 mL ultrapure water and 0.8 mL w(H ₂ SO ₄) = 96% are mixed in a 20 mL volumetric flask. After cooling down to room temperature, 0.6 mL c(N ₂ H ₆ SO ₄) = 0.1 mol/L and 10 µL w(HCHO) = 37% are added and the solution is filled to the mark with ultrapure water. This supporting electrolyte must be freshly prepared every day.

Standard solutions

Pt(IV) standard	$\beta(Pt(IV)) = 1 \ \mu g/L$
solution	This solution is prepared from the
	Pt(IV) stock solution by dilution
	with $c(HCI) = 0.1 \text{ mol/l}$ Dilutions

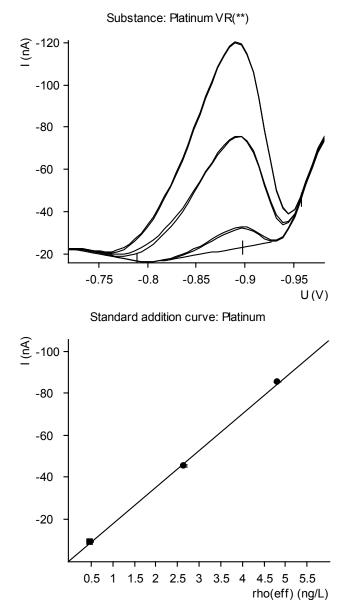
with concentrations below 1 mg/L should be freshly prepared every day.

Analysis

Measuring solution

10 mL (diluted) digested sample

1.5 mL supporting electrolyte


The concentration is determined by standard addition.

Parameters

Voltammetric		
Electrode operating mode	HMDE	
Measuring mode	DP – Differential pulse	
Stirring rate	2000 min ⁻¹	
Potentiostatic pretreatment		
Potential 1	-0.6 V	
Waiting time 1	120 s	
Equilibration time	10 s	
Sweep		
Start potential	-0.6 V	
End potential	-1.1 V	
Potential step	0.006 V	
Potential step time	0.3 s	
Sweep rate	0.02 V/s	
Pulse amplitude	0.05 V	
Substance		
Name	Pt	
Characteristic potential	-0.88 V	

Determination of platinum and rhodium in the ultratrace range by adsorptive stripping voltammetry

Example

Results

Sample	Tap water
Sample size	10.0 mL
β(Pt)	0.6 ng/L

Comments

- Under no circumstances the determination should be carried out with a Pt auxiliary electrode.
- A reference electrode that has already been used together with a Pt electrode should not be used.
- It is very advantageous if all vessels and electrodes are only used for this determination.

- If during the preparation of the supporting electrolyte the solution is not allowed to cool down to room temperature before the addition of the hydrazine sulfate and formaldehyde then an interfering peak will appear in the voltammogram at the peak potential of platinum.
- Pt(IV) is reduced to Pt(II) by the supporting electrolyte.
- With a deposition time of 120 s the limit of detection for Pt is approx. 0.1 ng/L.
- The sensitivity of the method could not be increased by using other measuring modes (square wave (SQW) and alternating current (AC)).
- With a deposition time of 60 s the working range is linear up to 200 ng/L Pt.
- With higher concentrations of nitrate the Pt peak is lost in the increase of the baseline. For example, 0.16 mol/L NO₃⁻ reduces the recovery of 5 ng/L Pt by 50%.

References

- Z. Zhao, H. Freiser Differential pulse polarographic determination of trace levels of platinum Anal. Chem. 58 (1986) 1498–1501.
- K. Hoppstock, F. Alt, K. Cammann, G. Weber Determination of platinum in biotic and environmental materials. Part II: A sensitive voltammetric method Fresenius Z. Anal. Chem. 335 (1989) 813–816.
- C. M. G. van den Berg, G. S. Jacinto The determination of platinum in sea water by adsorptive cathodic stripping voltammetry Anal. Chim. Acta. 211 (1988) 129–139.

Method 2: Determination of rhodium

Summary

In a hydrochloric acid solution rhodium forms a complex with formaldehyde that can be adsorbed on the HMDE. The adsorbed complex reduces the hydrogen overpotential at the mercury electrode and thus catalyzes the reduction of hydrogen. The signal of the hydrogen reduction is used for the determination; its size is proportional to the concentration of the Rh complex. The catalytic effect of the rhodium explains the extreme sensitivity of the method.

Application Bulletin 220/4 e

Determination of platinum and rhodium in the ultratrace range by adsorptive stripping voltammetry

Reagents

All of the used reagents must be of purest quality possible (for analysis or for trace analysis*).

- Hydrochloric acid, w(HCl) = 30%, for trace analysis*, CAS 7647-01-0
- Formaldehyde solution, w(HCHO) = 37%, CAS 50-00-0
- Rh(III) stock solution, β(Rh(III)) = 1 g/L, commercially available
- Ultrapure water, resistivity >18 MΩ·cm (25 °C), type I grade (ASTM D1193)

 * e.g., Merck suprapur®, Honeywell Fluka TraceSelect^ $^{\mathbb{B}}$ or equivalent

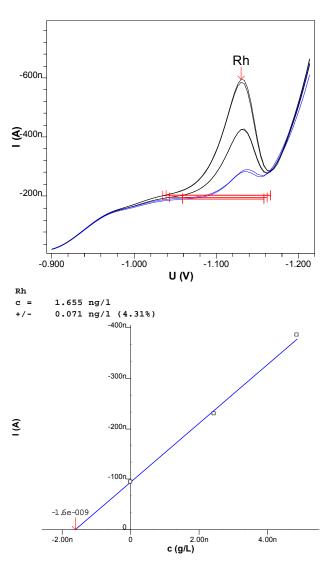
Standard solutions

Rh(III) standard-	$\beta(Rh(III) = 1 \ \mu g/L$
solution	This solution is prepared from the
	Rh(III) stock solution by dilution
	with c(HCI) = 0.1 mol/L. Dilutions
	with concentrations below 1 mg/L
	should be freshly prepared every
	day.

Analysis

Measuring solution

10 mL (diluted) digested sample 200 μL w(HCl) = 30% 10 μL w(HCHO) = 37%


The concentration is determined by standard addition.

Parameters

Voltammetric		
Electrode operating mode	HMDE	
Measuring mode	DP – Differential pulse	
Stirring rate	2000 min ⁻¹	
Potentiostatic pretreatment		
Potential 1	-0.7 V	
Waiting time 1	60 s	
Equilibration time	10 s	
Sweep		
Start potential	-0.9 V	
End potential	-1.23 V	
Potential step	0.004 V	
Potential step time	0.3 s	
Sweep rate	0.013 V/s	

Pulse amplitude	0.05 V
Substance	
Name	Rh
Characteristic potential	-1.15 V

Results

Sample	Tap water
Sample size	10.0 mL
β(Rh)	1.7 ng/L

Comments

• As the Rh peak lies in the hydrogen increase region it is recommended that only the front half of the peak is evaluated.

Application Bulletin 220/4 e

Determination of platinum and rhodium in the ultratrace range by adsorptive stripping voltammetry

- With a deposition time of 120 s the determination limit for Rh is approx. 0.5 ng/L.
- With a deposition time of 60 s the working range is linear up to 500 ng/L Rh.
- The presence of nitrate does not interfere with the determination but displaces the potential of the Rh peak towards more negative values.

References

- E. Helmers, N. Mergel Platinum and rhodium in a polluted environment: Studying the emissions of automobile catalysts with emphasis on the application of CSV rhodium analysis Fresenius J. Anal. Chem. 362 (1998) 522–528
- C. León, H. Emons, P. Ostapczuk, K. Hoppstock Simultaneous ultratrace determination of platinum and rhodium by cathodic stripping voltammetry Anal. Chim. Acta. 336 (1997) 99–104

Method 3: Simultaneous determination of rhodium and platinum

Summary

Rhodium and platinum can also be determined if they are both present in the same solution. As hydrazine interferes with the Rh determination, rhodium is first determined in hydrochloric acid solution without hydrazine sulfate. Afterwards the hydrazine sulfate solution and dilute sulfuric acid are added and the Pt determination is carried out.

Reagents

All of the used reagents must be of purest quality possible (for analysis or for trace analysis*). Only high purity water should be used.

- Hydrochloric acid, w(HCl) = 30%, for trace analysis*, CAS 7647-01-0
- Sulfuric acid, w(H₂SO₄) = 96%, for trace analysis*, CAS 7664-93-9
- Formaldehyde solution, w(HCHO) = 37%, CAS 50-00-0
- Hydrazine sulfate, N₂H₆SO₄, for trace analysis*, CAS 10034-93-2

- Rh(III) stock solution, β(Rh(III)) = 1 g/L, commercially available
- Pt(IV) stock solution, β(Pt(IV)) = 1 g/L, commercially available
- Ultrapure water, resistivity >18 MΩ·cm (25 °C), type I grade (ASTM D1193)

 * e.g., Merck suprapur^{e}, Honeywell Fluka TraceSelect^{e} or equivalent

Solutions

Hydrazine sulfate solution	$c(N_2H_6SO_4) = 0.1 \text{ mol/L}$ 0.13 g hydrazine sulfate is dissolved in 10 mL ultrapure water. This solution is stable for max. 1 week.
Diluted sulfuric acid	$c(H_2SO_4) = 2 \text{ mol/L}$ The diluted sulfuric acid is prepared from $w(H_2SO_4) = 96\%$ by dilution with ultrapure water.

Standard solutions

Rh(III) standard solution	β [Rh(III)] = 1 µg/L The solution is prepared from the Rh(III) standard stock solution by dilution with c(HCl) = 0.1 mol/L. Dilutions with concentrations below 1 mg/L should be freshly prepared every day.
Pt(IV) standard solution	β [Pt(IV)] = 1 µg/L The solution is prepared from the Pt(IV) standard stock solution by dilution with c(HCl) = 0.1 mol/L. Dilutions with concentrations below 1 mg/L should be freshly prepared every day.

Analysis

Measuring solution for the Rh determination

10 mL (diluted) digested sample

200 µL w(HCI) = 30%

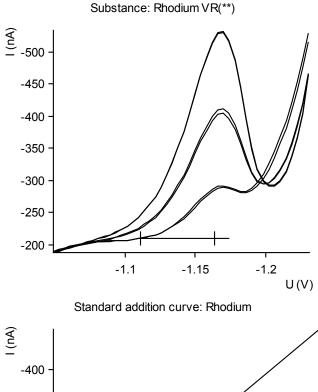
10 µL w(HCHO) = 37%

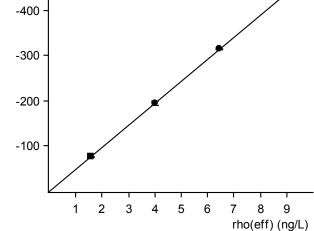
The concentration of Rh is determined by standard addition using the parameters specified in method 2.

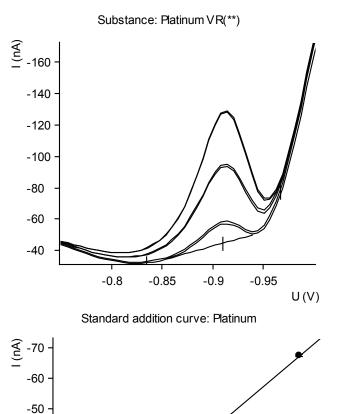
Measuring solution for the Pt determination

Measuring solution from the Rh determination

Determination of platinum and rhodium in the ultratrace range by adsorptive stripping voltammetry


 $15 \,\mu\text{L}\,c(N_2H_6SO_4) = 0.1 \,\text{mol/L}$


 $0.675 \text{ mL c}(H_2SO_4) = 2 \text{ mol/L}$


After the addition of the hydrazine sulfate solution the mixture is stirred for 60 s. The diluted sulfuric acid is then added and the platinum is determined under the conditions given in method 1.

The Pt concentration is determined by standard addition.

Examples

Results

-40

-30

-20

-10

0

0.5 1

Sample	Tap water
Sample size	10.0 mL
β(Rh)	1.6 ng/L
β(Pt)	1.1 ng/L

1.5 2 2.5 3 3.5 4

Comments

- Under no circumstances should the determination be carried out with a Pt auxiliary electrode.
- A reference electrode that has already been used together with a Pt electrode should not be used.

4.5 5 5.5

rho(eff) (ng/L)

Application Bulletin 220/4 e

Determination of platinum and rhodium in the ultratrace range by adsorptive stripping voltammetry

- It is very advantageous if all vessels and electrodes are only used for this determination.
- In order to avoid heating the measuring solution and the enlargement of the interference peak at the Pt potential associated with this, the sulfuric acid is added in dilute form.

References

- E. Helmers, N. Mergel Platinum and rhodium in a polluted environment: Studying the emissions of automobile catalysts with emphasis on the application of CSV rhodium analysis Fresenius J. Anal. Chem. 362 (1998) 522–528.
- C. León, H. Emons, P. Ostapczuk, K. Hoppstock Simultaneous ultratrace determination of platinum and rhodium by cathodic stripping voltammetry Anal. Chim. Acta. 336 (1997) 99–104

Determination of platinum and rhodium in the ultratrace range by adsorptive stripping voltammetry

Appendix

Report for the example determination of Pt in tap water (spiked sample) after UV digestion according to method 1

63.7 11.5

: 11221602 User: : 2000-11-22 16:38:04 Run : 0 Date: 2000-11-22 Determ. Modified Time: 16:02:51 Sample table: -_____ _____ _____ Ident.2/S2 Ident.3/S3 Method.call Sample size/S0 Pos. Ident.1/S1 Auf221100_2 10 mL 6 -----_____ Method : AB220_Pt Title : Determination of Platinum with DPCSV. AB220 Remarkl : 10 mL sample + 1.5 mL electrolyte Remark2 : tap water (digestion 22.11.2000/2 pos.6) Mass : 5.518 pg Add.mass : ^^ Substance : Platinum Comments Mass conc.: 551.8 pg/L _____ 63.7 pg/L (11.5%) Add.mass : V0.sample: MC.dev. : 10 mL Cal.dev. : I/nA I.mean Std.dev. I.delta Comments VR U/mV -8.897 -9.055 0.2229 00 -897 front overlapping 01 -896 -9.212 front overlapping -45.10 0.4846 -36.04 front overlapping 10 -897 -45.44 -44.76 front overlappin -84.78 -84.87 0.1349 -39.77 crit. rear ovlp. 11 20 -897 front overlapping -897 -896 -84.97 21 crit. rear ovlp. Y.reg/offset Slope Substance Techn. Nonlin. Mean deviat. • ____ _____ -17.52 Platinum std.add. -8.407e-09 1.160e-09 +/- Res.dev. % Final results Comments _____

Method print for the determination of Pt according to method 1

Platinum = 551.78 pg/L

q

END

Method: AB220_Pt.mth OPERATION SEQUENCE Title : Determination of Platinum with DPCSV. AB220 Instructions t/s Main parameters Auxiliary parameters V.fraction " V.total L V.add 1.500 mL mL SMPL>M V.fraction 1 2 3 Soln.name electrol 1.500 mL DOS>M V.add PURGE 4 5 6 STIR 300.0 Rot.speed 2000 /min (ADD PURGE 7 STIR 30.0 Rot.speed 2000 /min 8 (REP 9 SEGMENT DPCSV Segm.name 10 REP)1 Soln.name Pt_Std V.add 11 ADD>M 0.025 mL ADD)2 12 13 END Method: AB220_Pt SEGMENT DPCSV _____ Instructions t/s Main parameters Auxiliary parameters _____ ____ ----------0 PURGE 1 STIR 2000 /min 4 -50 mV 2 5.0 Rot.speed 3 HMDE Drop size Meas.cell normal U.ampl t.meas t.pulse 4 DPMODE 20.0 ms 0.30 s -600 mV t.step 40.0 ms 5 120.0 U.meas MEAS 6 7 OSTIR 10.0 26.1 U.start -600 mV U.end -1100 mV U.step бmV FSWEEP U.step 6 mV Sweep rate 20 mV/s U.standby 8 OMEAS mV

Determination of platinum and rhodium in the ultratrace range by adsorptive stripping voltammetry

Report for the example determination of Rh in tap water (spiked sample) after UV digestion according to method 2 ====== METROHM 797 VA COMPUTRACE (Version 1.0.0.1) (Serial No. 0) ======== Determination : 11221804_20001122_2_9.dth Sample ID : 20001122_2_9 Sample ID Time: Creator method : Date : Creator determ.: Date : 2000-11-22 Time: 18:04:05 Modified by : ---Date : Time: ____ _____ _____ Method: AB 220_2 Det of Rh.mthTitle: Determination of RhodiumRemark1: 10 mL sample + 200 uL HCl (30 %) + 10 uL FormaldehydRemark2: tap water (22.11.2000/2 pos. 9) _____ Sample amount : 10.000 mL Cell volume : 10.210 mL Cell volume _____ Substance : Rh Conc. : 1.621 ng/L Conc.dev. : 0.070 ng/L Amount : 16.547 pg Add.amount : 25.000 pg _____ (4.31%) VR V nA I.mean Std.Dev. I.delta Comments _____ -----_____ ___ --------1 - 1 -1.138 -96.2 -94.8 1.945 0.0 1 - 2 -1.134 -93.4 2 - 1 2 - 2 3 - 1 -1.130 -1.134 -1.130 -229.8 1.152 -229.0 -135.0 -230.6 -386.0 8.820 -156.2 3 - 2 -1.130 -379.8 Substance Calibr. Y.reg/offset Slope Mean deviat. Corr.Coeff. ____ std.add. Rh -9.425e-008 -5.815e+001 6.243e-009 0.99858 Final results +/- Res. dev. % Comments _____ Rh: default = 1.655 ng/l 0.071 4.314 Method print for the determination of Rh according to method 2

Method parameters						
Method : AB 220_2 Det of Rh.mth Title : Determination of Rhodium Remark1 : 10 mL sample + 200 uL HCl (30 %) + 10 uL Formaldehyd Remark2 : tap water (22.11.2000/2 pos. 9)						
Calibration : Standard addition Technique : Batch Addition : Manual						
Sample ID : 20001122_2_9 Sample amount (mL): 10.000 Cell volume (mL): 10.210						
Voltammetric parameters						
	: DP - Differential Pulse					
Highest current range Lowest current range	: 10 mA : 100 nA					
	: HMDE : 4 : 2000					
Initial electr. conditioning	: No					
No. of additions No. of replications	: 2 : 2					
Measure blank Addition purge time (s)	: No : 30					
Initial purge time (s)	: 300					

Determination of platinum and rhodium in the ultratrace range by adsorptive stripping voltammetry

Conditioning cyclesStart potential (V): -1.200End potential (V): -0.100No. of cycles: 0
Hydrodynamic (measurement):NoCleaning potential (V):-0.100Cleaning time (s):0.000Deposition potential (V):-0.700Deposition time (s):60.000
Sweep Equilibration time (s) : 5.000 Start potential (V) : -0.900 End potential (V) : -1.210 Voltage step (V) : 0.004 Voltage step time (s) : 0.300 Sweep rate (V/s) : 0.013 Pulse amplitude (V) : 0.040
Cell off after measurement : Yes
Peak evaluation
Regression technique: Linear RegressionPeak evaluation: HeightMinimum peak width (V.steps): 5Minimum peak height (A): 1.000e-010Reverse peaks: NoSmooth factor: 1Eliminate spikes: Yes
Substances
Rh : -1.180 V +/- 0.050 V
Standard solution : 1 1.000 ug/L Addition volume (mL) : 0.025
default : Final result (Rh) = Conc * (10.21 / 10) * (1e+009 / 1) + 0 - 0
Baseline
Substance Addition automatic start (V) end (V) type scope
RhSampleyeslinearfrontEndAddition 1yeslinearfrontEndAddition 2yeslinearfrontEnd

Report for the example determination of Rh and Pt in tap water (spiked sample) after UV digestion according to method 3

: 11221713 : no Date: 2000-11-22 Determ. User: Modified 0 Time: 17:13:37 Run : Sample table: -_____ Ident.2/S2 Ident.3/S3 Method.call Sample size/S0 Pos. Ident.1/S1 8 Auf221100_2 10 mL _____ ___ _____ Method : AB220R+P Title : Determination of Rhodium and Platinum. AB 220 Remark1 : Aufschluss 22.11.2000/2 Pos.8 Remark2 : tap water -----_ _ _ _ _ _ _ _ _ Substance : Rhodium Comments Mass conc.: 1.600 ng/L : 16 pg Mass _____ MC.dev. : 0.059 ng/L (3.66%) Add.mass : 25 pg Cal.dev. : V0.sample: 10 mL U/mV I/nA I.mean Std.dev. I.delta VR Comments _____ _____ _____ 00 -1163 -75.84 -76.76 1.309 front overlapping 01 -1162 -77.69 front overlapping -197.2 -190.6 10 -1167 -193.9 4.652 -117.2 -1167 11 -312.6 -314.6 -313.6 1.417 -119.6 20 -1168 21 -1168

Determination of platinum and rhodium in the ultratrace range by adsorptive stripping voltammetry

	1.062 r 0.050 r	ng/L ng/L (4.7%)	Comments		
	VR U/mV	I/nA I.t	mean Std.dev.	I.delta	Comments
		-12.01 -12 -12.16	2.09 0.1041		front overlapping front overlapping
	10 -912 11 -912		8.68 0.1339	-26.59	front overlapping front overlapping
		-66.97 -6	7.13 0.2241	-28.45	front overlapping front overlapping
Substance		Y.reg/offset		Nonlin.	Mean deviat.
	std.add.	-7.626e-08	8 -48.67 8 -12.12		2.673e-09 5.902e-10
Final result	S		+/- Res.dev	• •	Comments
Rhodium = Platinum =			0.059 0.050		

Method print for the determination of Rh and Pt according to method 3

 method:
 AB220R+P.mth
 OPERATION SEQUENCE

 Title:
 Determination of Rhodium and Platinum. AB 220

	Instructions	t/s		ters		
1 2 3	SMPL>M DOS>M REM		V.fraction Soln.name	mL (30%), 10 uL B	V.total V.add	L 0.210 mL
4 5 6 7	PURGE STIR (ADD PURGE	300.0	Rot.speed	2000 /min		
8 9	STIR (REP	30.0	Rot.speed	2000 /min		
10	SEGMENT REP)1		Segm.name	DPCSV_Rh		
12 13	ADD>M ADD)2		Soln.name	Rh_Std	V.add	0.025 mL
14 15	STIR DOS>M		Rot.speed Soln.name	2000 /min Hydrazin 2000 /min	V.add	0.015 mL
16 17	200.11		Rot.speed Soln.name	2000 /min 2M H2SO4	V.add	0.675 mL
18 19 20	PURGE (ADD PURGE	30.0				
21	STIR (REP	30.0	Rot.speed	2000 /min		
23 24	SEGMENT REP)1		Segm.name	DPCSV_Pt		
25	ADD>M ADD)2 END		Soln.name	Pt_Std	V.add	0.025 mL
Meth	nod: AB220R+P		SEGMENT			

DPCSV_Rh

	Instructions	t/s	Main parameters		Auxiliary parameters	
1	0 PURGE					
2	STIR	5.0	Rot.speed	2000 /min		
3	HMDE		Drop size	4	Meas.cell	normal
4	DPMODE		U.ampl	-50 mV	t.meas	20.0 ms
			t.step	0.30 s	t.pulse	40.0 ms
5	MEAS	60.0	U.meas	-700 mV		
6	OSTIR	10.0				
7	FSWEEP	25.8	U.start	-900 mV	U.step	4 mV
			U.end	-1230 mV	Sweep rate	13.33 mV/s
8	OMEAS		U.standby	mV		
9	END					

Method: AB220R+P

SEGMENT

Determination of platinum and rhodium in the ultratrace range by adsorptive stripping voltammetry

		DPCSV_Pt	; 				
Instructions	t/s	Main paramet	ers	Auxiliary p	Auxiliary parameters		
0PURGE							
STIR	5.0	Rot.speed	2000 /mir	1			
HMDE		Drop size	4	Meas.cell	normal		
DPMODE		U.ampl	-50 mV	t.meas	20.0 ms		
		t.step	0.30 s	t.pulse	40.0 ms		
MEAS	60.0	U.meas	-600 mV	-			
OSTIR							
FSWEEP	26.1	U.start	-600 mV	U.step	бmV		
		U.end	-1100 mV	Sweep rate	20 mV/s		
OMEAS		U.standby	mV				
END							
	OPURGE STIR HMDE DPMODE MEAS OSTIR FSWEEP OMEAS	OPURGE STIR 5.0 HMDE DPMODE MEAS 60.0 OSTIR FSWEEP 26.1 OMEAS	Instructions t/s Main paramet OPURGE STIR 5.0 Rot.speed HMDE Drop size DPMODE U.ampl t.step MEAS 60.0 U.meas OSTIR FSWEEP 26.1 U.start U.end OMEAS U.standby	OPURGESTIR5.0Rot.speed2000 /mirHMDEDrop size4DPMODEU.ampl-50 mVt.step0.30 sMEAS60.0U.meas-600 mVOSTIRFSWEEP26.1U.start-600 mVU.end-1100 mVU.standbymV	Instructions t/s Main parameters Auxiliary p OPURGE STIR 5.0 Rot.speed 2000 /min HMDE Drop size 4 Meas.cell DPMODE U.ampl -50 mV t.meas t.step 0.30 s t.pulse MEAS 60.0 U.meas -600 mV OSTIR -50 mV U.step U.end FSWEEP 26.1 U.start -600 mV Sweep rate 0MEAS U.standby mV Sweep rate		