

# **Application Bulletin 191/3 e**

# Determination of cysteine and cystine simultaneously by polarography

### Summary

After the degradation of biological samples (e.g. milk, wool, etc.), it is often important to know the cystine/cysteine ratio. This Application Bulletin describes the simultaneous, polarographic determination of the two amino acids. The determination is performed in perchloric acid solution at the DME. Samples with a high protein content require that the determination is performed in an alkaline solution.

### Instruments

VA instrument

capable of operating a Multi-Mode Electrode and supporting differential pulse (DP) measuring mode

#### **Electrodes**

| WE | Multi-Mode Electrode pro                                                                                    | 6.1246.120 |
|----|-------------------------------------------------------------------------------------------------------------|------------|
|    | Mercury drop capillary                                                                                      | 6.1226.030 |
| RE | Ag/AgCl reference electrode<br>Ag/AgCl/KCl (3 mol/L)                                                        | 6.0728.x20 |
|    | Electrolyte vessel Filled with c(CH <sub>3</sub> COOLi) = 1 mol/L (method 1) or c(KCl) = 3 mol/L (method 2) | 6.1245.010 |
| AE | Pt rod electrode                                                                                            | 6.0343.x00 |

## Reagents

All of the used reagents must be of purest quality possible (for analysis or for trace analysis\*).

- Cystine, for analysis, CAS 56-89-3
- Cysteine, for analysis, CAS 52-90-4
- Ultrapure water, resistivity >18 MΩ·cm (25 °C), type I grade (ASTM D1193)

### For method 1

- Perchloric acid, w(HClO<sub>4</sub>) = 70%, for analysis, CAS 7601-90-3
- Lithium acetate dihydrate, w(LiOOCCH<sub>3</sub>·2 H<sub>2</sub>O) ≥ 99.0%, for analysis, CAS 6108-17-4

#### For method 2

- Ammonium hydroxide solution, w(NH<sub>3</sub>) = 25%, for analysis, CAS 1336-21-6
- Hydrochloric acid, w(HCl) = 30%, for analysis, CAS 7647-01-0
- Sodium hydroxide solution, c(NaOH) = 2.0 mol/L, CAS 1310-73-2

# Method 1: Samples containing few proteins

### Summary

Samples without proteins can be determined in perchloric acid solution. The determination limit is heavily dependent on the matrix and lies at approx. 1 mg/L for both substances.

### **Solutions**

| Electrolyte         | $c(HCIO_4) = 0.1 \text{ mol/L}$                                     |  |  |
|---------------------|---------------------------------------------------------------------|--|--|
|                     | 4.16 mL perchloric acid are diluted to 500 mL with ultrapure water. |  |  |
| Li-acetate solution | c(CH <sub>3</sub> COOLi) = 1 mol/L                                  |  |  |
|                     | for reference electrode                                             |  |  |

### Standard solutions

| otamaara oorationo         |                                                                                                                                                                                     |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cysteine standard solution | c(cysteine) = 1 g/L in perchloric acid Mix 0.1 g cysteine to a slurry in 20 mL dist. water and dissolve by adding 0.86 mL perchloric acid, then fill up to 100 mL with dist. water. |
| Cystine standard solution  | c(cystine) = 1 g/L in perchloric acid  Mix 0.1 g cystine to a slurry in 20 mL dist. water and dissolve by adding 0.86 mL perchloric acid, then fill up to 100 mL with dist. water.  |



Determination of cysteine and cystine simultaneously by polarography

# **Analysis**

# Measuring solution

10 mL diluted sample

10 mL supporting electrolyte

The concentrations are determined by standard addition.

### **Parameters**

| Voltammetric             |                         |
|--------------------------|-------------------------|
| Electrode operating mode | DME                     |
| Measuring mode           | DP – Differential pulse |
| Stirring rate            | 2000 min <sup>-1</sup>  |
| Equilibration time       | 30 s                    |
| Sweep                    |                         |
| Start potential          | 0.2 V                   |
| End potential            | -0.8 V                  |
| Potential step           | 0.006 V                 |
| Potential step time      | 0.6 s                   |
| Sweep rate               | 0.01 V/s                |
| Pulse amplitude          | 0.05 V                  |
| Substance                |                         |
| Name                     | Cysteine                |
| Characteristic potential | -0.08 V                 |
| Name                     | Cystine                 |
| Characteristic potential | -0.49 V                 |

# Example











| Δn | plicat | lion  | Rull | etin  | 101 | /3 A |
|----|--------|-------|------|-------|-----|------|
| ΠU | DIICA  | IIOII | Dull | CIIII | 191 | J C  |

Determination of cysteine and cystine simultaneously by polarography

### Result

| Sample size | 10.0 mL  |
|-------------|----------|
| β(cysteine) | 2.9 mg/L |
| β(cystine)  | 5.8 mg/L |

### Comments

- The peak potentials of both substances shift to slightly more negative values with increasing concentrations.
   The value must perhaps be corrected.
- If the concentrations of cystine and cysteine differ strongly, it is possibly necessary to perform two analyses in various dilutions for the respective substance.

# Method 2: Samples with a high protein content

### **Summary**

Samples with a high protein content cannot be determined using perchloric acid as electrolyte, since proteins are precipitated in acidic solutions. Therefore the determination is carried out in ammonium buffer at pH 9.6.

The limit of detection for cysteine is approx. 0.05 mg/L, for cystine approx. 1 mg/L. The determination runs linear for cysteine up to 180 mg/L, for cystine up to 300 mg/L.

### Solutions

| Ammonia buffer | c(NH <sub>4</sub> CI) = 1 mol/L              |  |  |
|----------------|----------------------------------------------|--|--|
| pH 9.6         | $c(NH_3) = 2 \text{ mol/L } (pH 9.6)$        |  |  |
|                | 112.5 mL NH <sub>3</sub> + 53 mL HCl, filled |  |  |
|                | up to 500 mL with ultrapure water.           |  |  |

### Standard solutions

| Cysteine standard solution | c(cysteine) = 1 g/L Dissolve 0.100 g cysteine in 20 mL ammonium buffer and fill up to 100 mL with dist. water. |
|----------------------------|----------------------------------------------------------------------------------------------------------------|
| Cystine standard solution  | c(cystine) = 1 g/L Dissolve 0.100 g cystine in 5 mL sodium hydroxide and fill up to 100 mL with dist. water.   |

### **Analysis**

### Measuring solution

10 mL diluted sample

1 mL ammonia buffer pH 9.6

The concentrations are determined by standard addition.

The peak potential of cystine is strongly dependent on the pH value and shifts in negative direction with increasing pH value.

#### **Parameters**

| Voltammetric             |                         |  |
|--------------------------|-------------------------|--|
| Electrode operating mode | DME                     |  |
| Measuring mode           | DP – Differential pulse |  |
| Stirring rate            | 2000 min <sup>-1</sup>  |  |
| Equilibration time       | 30 s                    |  |
| Sweep                    |                         |  |
| Start potential          | -0.25 V                 |  |
| End potential            | -1.75 V                 |  |
| Potential step           | 0.006 V                 |  |
| Potential step time      | 0.8 s                   |  |
| Sweep rate               | 0.0075 V/s              |  |
| Pulse amplitude          | 0.05 V                  |  |
| Substance                |                         |  |
| Name                     | Cysteine                |  |
| Characteristic potential | -1.0 V                  |  |
| Name                     | Cystine                 |  |
| Characteristic potential | -0.5 V                  |  |

### Example





Application Bulletin 191/3 e

Determination of cysteine and cystine simultaneously by polarography





# Result

| Sample      | Sodium caseinate |
|-------------|------------------|
| Sample size | 0.1 mL           |
| β(Cysteine) | 0.031 g/L        |
| β(Cystine)  | 0.456 g/L        |

### Comments

- If the pH value is over 10, the cystine peak becomes very flat and insensitive.
- If the concentrations of cystine and cysteine differ greatly, it will possibly be necessary to perform two analyses in various dilutions for the respective substance.





# **Appendix**

# Report for the example determination of cysteine and cystine according to method 1

| Determ.<br>Modified<br>Sample table                                                                                                                                        | : 06111056<br>: 1999-06-1<br>: - | HM 746 VA TRA<br>U<br>1 11:12:06 R                     | ser: mj<br>un: 18 |                   | ) ===========<br>Date: 1999-06-11<br>Time: 10:56:21 |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------|-------------------|-------------------|-----------------------------------------------------|--|--|--|
| Pos. Ident<br>cysHC                                                                                                                                                        | .1/S1 Id<br>104                  | ent.2/S2 I                                             | dent.3/S3         | Method.cal        | l Sample size/S0<br>10.0 mL                         |  |  |  |
| Method : AB191/1 Title : Determination of Cystine and Cysteine Remark1 : 10 mL supporting electrolyte + 10 mL sample Remark2 : supporting electrolyte: HClO4 c = 0.1 mol/L |                                  |                                                        |                   |                   |                                                     |  |  |  |
| Substance :                                                                                                                                                                | Cysteine                         | g/L<br>g/L (4.22%)                                     |                   |                   | Comments                                            |  |  |  |
|                                                                                                                                                                            | VR U/mV                          | I/nA I.m                                               | ean Std.dev       |                   | Comments                                            |  |  |  |
|                                                                                                                                                                            | 00 -80                           | -92 07 -92                                             | 09 0 0219         |                   |                                                     |  |  |  |
|                                                                                                                                                                            | 11 -87                           | -177.9                                                 | 0.9 1.432         | -04.04            |                                                     |  |  |  |
|                                                                                                                                                                            | 20 -92<br>21 -91                 | -92.11<br>-175.9 -17<br>-177.9<br>-254.5 -25<br>-250.2 | 2.3 3.016         | -75.41            |                                                     |  |  |  |
| Substance :<br>Mass conc.:<br>MC.dev. :<br>Cal.dev. :                                                                                                                      | Cystine<br>5.798 m<br>0.090 m    | g/L<br>g/L (1.55%)                                     |                   | 57.98 μg<br>25 μg | Comments                                            |  |  |  |
|                                                                                                                                                                            |                                  | I/nA I.m                                               |                   |                   |                                                     |  |  |  |
|                                                                                                                                                                            | 00 -483                          | -48.28 -48                                             |                   |                   |                                                     |  |  |  |
|                                                                                                                                                                            |                                  | -48.23<br>-68.13 -68<br>-68.47                         | .30 0.2406        | -20.05            |                                                     |  |  |  |
|                                                                                                                                                                            | 20 -489<br>21 -492               | -89.29 -88                                             | .88 0.5862        | -20.58            |                                                     |  |  |  |
| Substance                                                                                                                                                                  | Techn.                           | Y.reg/offset                                           | Slope             | Nonlin.           | Mean deviat.                                        |  |  |  |
| Cysteine                                                                                                                                                                   | std.add.                         | -9.352e-08<br>-4.813e-08                               | -3.284e-0         | 5                 | 3.016e-09<br>3.830e-10                              |  |  |  |
| Final results +/- Res.dev. % Comments                                                                                                                                      |                                  |                                                        |                   |                   |                                                     |  |  |  |
| Cvsteine =                                                                                                                                                                 | 2.8726 m<br>5.7979 m             | a/L                                                    | 0.121<br>0.090    | 4.22              |                                                     |  |  |  |

### Method print for the determination cysteine and cystine according to method 1

|    | Instructions | t/s   | Main parameters |           | Auxiliary parameters |          |  |
|----|--------------|-------|-----------------|-----------|----------------------|----------|--|
| 1  | SMPL>M       |       | V.fraction      | mL        | V.total              | L        |  |
| 2  | DOS>M        |       | Soln.name       | electrol  | V.add                | 10 mL    |  |
| 3  | PURGE        |       |                 |           |                      |          |  |
| 4  | STIR         | 300.0 | Rot.speed       | 2000 /min |                      |          |  |
| 5  | ( ADD        |       |                 |           |                      |          |  |
| 6  | PURGE        |       |                 |           |                      |          |  |
| 7  | STIR         | 30.0  | Rot.speed       | 2000 /min |                      |          |  |
| 8  | 0PURGE       |       |                 |           |                      |          |  |
| 9  | 0STIR        | 20.0  |                 |           |                      |          |  |
| 10 | (REP         |       |                 |           |                      |          |  |
| 11 | SEGMENT      |       | Segm.name       | POL       |                      |          |  |
| 12 | REP)1        |       |                 |           |                      |          |  |
| 13 | PURGE        |       |                 |           |                      |          |  |
| 14 | ADD>M        |       | Soln.name       | Cystine   | V.add                | 0.025 mL |  |
| 15 | ADD>M        |       | Soln.name       | Cysteine  | V.add                | 0.025 mL |  |
| 16 | ADD)2        |       |                 | =         |                      |          |  |
| 17 | בואום        |       |                 |           |                      |          |  |



Determination of cysteine and cystine simultaneously by polarography

Method: AB191\_1 SEGMENT POL

|        | Instructions  | t/s   | Main parameters            |                           |    | Auxiliary parameters            |                            |  |
|--------|---------------|-------|----------------------------|---------------------------|----|---------------------------------|----------------------------|--|
| 1<br>2 | DME<br>DPMODE |       | U.ampl                     | -50 m                     |    | t.meas                          | 20.0 ms                    |  |
| 3      | SWEEP         | 101.4 | t.step<br>U.start<br>U.end | 0.60 s<br>200 m<br>-800 m | nV | t.pulse<br>U.step<br>Sweep rate | 40.0 ms<br>6 mV<br>10 mV/s |  |
| 4<br>5 | OMEAS<br>END  |       | U.standby                  |                           | nV | Succe Face                      | 20 11147 15                |  |

# Report for the example determination of cysteine and cystine according to method 2

| ======= METROHM 797 VA COMPUTRACE (Version 1.0.0.1) (Serial No. 0) ========       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                          |                          |                    |  |  |  |  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|--------------------------|--------------------|--|--|--|--|
| Determination                                                                     | : 06150859_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Na-caseinat.d              | th                       |                          |                    |  |  |  |  |
| Method<br>Title<br>Remark1<br>Remark2                                             | Date: Time: Date: 1999-06-15 Time: 08:59:33 Date: 2017-07-20 Time: 16:46:51  AB191_Det of Cystin and Cystein in alkaline solution.mth Bestimmung von Cystin und Cystein background electrolyte: NH3/NH4Cl pH 9.6  Date: Time: Date: Time: Date: Date: 08:59:33 Date: |                            |                          |                          |                    |  |  |  |  |
| Sample amount<br>Cell volume                                                      | : 0.100 ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -<br>-<br>-                |                          |                          |                    |  |  |  |  |
| Substance<br>Conc.<br>Conc.dev.<br>Amount<br>Add.amount                           | : Cystine<br>: 4.513 mg<br>: 0.055 mg<br>: 45.583 ug<br>: 50.000 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g/L<br>g/L (1.2)<br>g      | 2%)                      |                          |                    |  |  |  |  |
| VR V                                                                              | nA I.me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ean Std.Dev.               | I.delta                  |                          |                    |  |  |  |  |
| 1 - 1 -1.018                                                                      | -45.3 -45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.5 0.251                  | 0.0                      |                          |                    |  |  |  |  |
| 1 - 1 -1.018<br>1 - 2 -1.006<br>2 - 1 -1.006<br>2 - 2 -1.006                      | -45.7<br>-95.2 -95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.3 0.166                  | -49.8                    |                          |                    |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                             | -141.9 -14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.0 1.527                  | -47.7                    |                          |                    |  |  |  |  |
| Substance<br>Conc.<br>Conc.dev.<br>Amount<br>Add.amount                           | : Cysteine<br>: 305.007 ug<br>: 5.841 ug<br>: 3.081 ug<br>: 2.500 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/L<br>g/L (1.9)<br>J      | ( 1.92%)                 |                          |                    |  |  |  |  |
| VR V                                                                              | nA I.me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ean Std.Dev.               | I.delta                  | Comments                 |                    |  |  |  |  |
| 1 - 1 -0.482                                                                      | -49.7 -49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.5 0.249                  | 0.0                      |                          |                    |  |  |  |  |
| 1 - 1 - 0.482<br>1 - 2 - 0.482<br>2 - 1 - 0.488<br>2 - 2 - 0.488<br>3 - 1 - 0.488 | -49.4<br>-90.1 -90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.346                      | -40.8                    |                          |                    |  |  |  |  |
| 2 - 2 -0.488<br>3 - 1 -0.488<br>3 - 2 -0.488                                      | -90.6<br>-128.1 -12<br>-127.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.5 0.746                  | -37.2                    |                          |                    |  |  |  |  |
| Substance Ca                                                                      | alibr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y.reg/offset               | Slop                     | e Mean devi              | at. Corr.Coeff.    |  |  |  |  |
| Cystine st                                                                        | id.add.<br>id.add.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.553e-008<br>-4.968e-008 | -1.009e-00<br>-1.629e-00 | 5 7.436e-0<br>4 1.092e-0 | 0.99983<br>0.99968 |  |  |  |  |
| Final results                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +,                         | /- Res. dev              | . % Co                   | omments            |  |  |  |  |
| Cystine:<br>default                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56 g/l 0                   | .006                     | 1.215                    |                    |  |  |  |  |
| Cysteine:<br>default                                                              | = 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31 g/l 0                   | .001                     | 1.915                    |                    |  |  |  |  |

# Method print for the determination cysteine and cystine according to method 2

| Method parameters |
|-------------------|
|                   |





Determination of cysteine and cystine simultaneously by

: AB191\_2 Det of Cystine and Cysteine (high protein content).mth Title Determination of Cystine and Cysteine (high protein content): 10 mL sample + 1 mL ammonia buffer (pH 9.6) Remark1

Remark2

Calibration : Standard addition Technique : Batch Addition : Manual

Sample ID : Na-caseinat Sample amount (mL): 10.000 Cell volume (mL): 11.000

Voltammetric parameters

.\_\_\_\_ \_\_\_\_\_

: DP - Differential Pulse

: 1 Highest current range mΑ Lowest current range : 100 nA Electrode : DME Stirrer speed (rpm) : 2000 Initial electr. conditioning : No

No. of additions No. of replications Measure blank : No : 30 Addition purge time (s)

Initial purge time (s) 300

Sweep

Equilibration time (s) 5.000 Start potential (V) End potential (V) -0.250 -1.750 Voltage step (V)
Voltage step time (s)
Sweep rate (V/s)
Pulse amplitude (V) 0.006 0.800 0.050 Pulse time (s) 0.040

Cell off after measurement : Yes

Peak evaluation

Regression technique : Linear Regression Peak evaluation : Height

Minimum peak width (V.steps)
Minimum peak height (A) : 5 : 1.000e-010 Reverse peaks : No : 4

Smooth factor : Yes Eliminate spikes

Substances

: -1.000 V +/- 0.050 V

Standard solution : 1 1 Addition volume (mL) : 0.050 1.000 g/L

Cystine

: Final result (Cystin) = Conc \* (11 / 10) \* (1000 / 1) + 0 - 0

: -0.480 V +/- 0.050 V Cystei

0.100 g/L Standard solution : 2

Addition volume (mL) : 0.025

Cysteine

: Final result (Cystei) = Conc \* (11 / 10) \* (1000 / 1) + 0 - 0

Baseline

scope Substance Addition automatic start (V) end (V) type linear wholePeak linear wholePeak linear wholePeak Cystin Sample yes
Addition 1 yes
Addition 2 yes yes --- ---yes --- ---Sample yes --- ---Addition 1 yes --- ---Addition 2 yes --- --linear wholePeak linear wholePeak linear wholePeak Cystei Sample