

Application Bulletin 131/3 e

Determination of aluminum by adsorptive stripping voltammetry

Summary

This Application Bulletin describes a voltammetric method for the determination of aluminum in water samples, dialysis solutions, sodium chloride solutions and digestion solutions (e.g. of lyophilisates). The method utilizes the complexation of the Al^{3+} ion by Calcon (Eriochrome blue black R). The formed complex can easily be reduced electrochemically at 60 °C. The limit of quantitation depends on the purity of the reagents used and is approx. 5 $\mu g/L$.

Instruments

VA instrument	
capable of operating a Multi-Mode Electrode and supporting differential pulse (DP) measuring mode	
Measuring vessel with thermostat jacket	6.1418.220
Recirculation thermostat	

Electrodes

WE	Multi-Mode Electrode pro Mercury drop capillary	6.1246.120 6.1226.030 or 6.1226.050
RE	Ag/AgCl reference electrode Ag/AgCl/KCl (3 mol/L) Electrolyte vessel Filled with c(KCl) = 3 mol/L	6.0728.x20 6.1245.010
AE	Pt rod electrode	6.0343.x00

Reagents

All of the used reagents must be of purest quality possible (for analysis or for trace analysis*).

- Sodium hydroxide solution, w(NaOH) = 30%, for trace analysis*, CAS 1310-73-2
- Acetic acid, w(CH₃COOH) = 100%, for trace analysis*, CAS 64-19-7
- Methanol, for analysis, CAS 67-56-1
- Al³⁺ stock solution, β(Al³⁺) = 1 g/L (commercially available)

- Calcon (Eriochrome blue black R), Fluka no. 45550,
 C.I. no. 15705, CAS 2538-85-4
- Ultrapure water, resistivity >18 MΩ·cm (25 °C), type I grade (ASTM D1193)
- * e.g., Merck suprapur®, Honeywell Fluka TraceSelect® or equivalent

Solutions

Sodium acetate buffer	c(NaOH) = 1.0 mol/L c(CH ₃ COOH) = 2.0 mol/L Place approx. 50 mL ultrapure water, 10 mL w(NaOH) = 30% and 11.4 mL w(CH ₃ COOH) = 100% in a 100 mL volumetric flask, fill to the mark with ultrapure water and mix.
Complexing agent	w(Calcon) = 0.05 % (0.5 g/L) in methanol This solution has to be freshly prepared every day.

Standard solutions

Al standard	$\beta(Al^{3+}) = 1 \text{ mg/L}$
solution	This solution is prepared from the
	Al ³⁺ stock solution by dilution with
	c(HCI) = 0.01 mol/L. The standard
	solution has to be stored in a plastic
	vessel and is stable for one week at
	most.

Sample preparation

Water samples contaminated by organic substances (surface water, waste water) have to be digested prior to the voltammetric determination. Depending on the content of organic substances (particularly surface-active substances), a UV digestion (909 UV Digester) or wet-chemical acid digestion (H_2SO_4/H_2O_2) is carried out.

Following we describe an acid digestion using an example of lyophilisates:

- 0.7 ... 0.9 g sample is mixed in a quartz Kjeldahl flask with 3 mL ultrapure water and 2 mL conc. sulfuric acid.
- Heat up the mixture carefully (formation of foam) and reduce through evaporation.

- Slowly add four portions each of 2 mL w(H₂O₂) = 30% and heat until the solution becomes clear and colorless.
- The sulfuric acid is evaporated down to a very small volume
- After cooling down, rinse the sample solution with ultrapure water into a 100 mL volumetric flask and fill to the mark.

Analysis

The determination is to be carried out at 60 °C!

Measuring solution

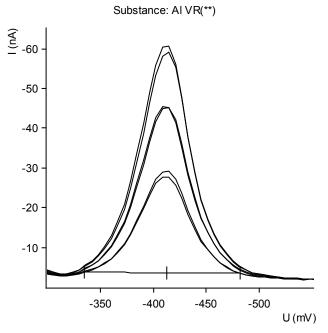
20 mL sample solution at approx. pH = 2.0

2 mL buffer

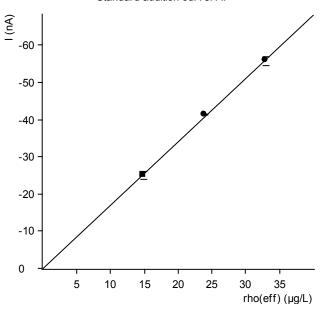
If necessary, adjust the pH value to 4.5 \pm 0.1 with sodium hydroxide solution or acetic acid.

Having purged the measuring solution for 180 s,

add 120 μ L w(Calcon) = 0.05%,


then record the voltammogram.

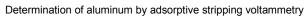
The concentration is determined by standard addition. It is important to observe a waiting time of 3 min after each addition to allow complexation.


Parameters

Voltammetric	
Electrode operating mode	HMDE
Measuring mode	DP – Differential pulse
Stirring rate	2000 min ⁻¹
Potentiostatic pretreatment	
Potential 1	-0.35 V
Waiting time 1	30 s
Equilibration time	10 s
Sweep	
Start potential	-0.3 V
End potential	-0.65 V
Potential step	0.006 V
Potential step time	0.4 s
Sweep rate	0.015 V/s
Pulse amplitude	0.05 V
Substance	
Name	Al
Characteristic potential	-0.42 V

Example

Standard addition curve: Al



Result

Sample	Drinking water
Sample size	20.0 mL
β(Al)	16.4 μg/L

Comments

 As the voltammetric determination described is a highly sensitive method, it is necessary to determine the blank of the reagents used and take it into account when

calculating the results. The blank determination has to be carried out in exactly the same way as the analysis of the sample. The same quantity of Calcon has to be added as the blank also depends on the concentration of this complexing agent.

- Al³⁺ concentrations in the ppm range are determined at the dropping mercury electrode (DME or SMDE).
- After 45 min at the most the determination should be finished, as the dyestuff may alter.
- A tenfold excess of Fe³⁺ does not yet interfere with the determination in the ppb range. However, for determinations in the ppm range the Fe³⁺ concentration should not exceed the Al³⁺ concentration. If more iron is present, it can be removed from the sample by electrolysis.
- An alternative voltammetric method for the determination of aluminum is described in Application Bulletin 186. With this method the interference caused by Fe³⁺ ions is far lower; however, high salt concentrations do interfere.
- If great amounts of Cu²⁺ ions (over 50-fold excess) are present, the solution turns a bright violet and the aluminum peak is suppressed.
- At pH 4 lead is reduced at approximately the same potential as the aluminum complex. However, the lead peak is less sensitive than the aluminum peak. Interferences will only occur if Pb²⁺ is present in great excess.

References

- G. S. P. Ritchie, A. M. Posner, J. M. Ritchie
 The determination of trace levels of aluminum by differential pulse polarography
 Anal. Chim. Acta 117 (1980) 233–239.
- C. M. G. van den Berg, K. Murphy, J. P. Riley
 The determination of aluminum in sea water and fresh
 water by cathodic stripping voltammetry
 Anal. Chim. Acta 188 (1986) 177–185.
- E. Stryjewska, S. Rubel, K. Kusmierczyk
 Trace electrochemical determination of aluminum in environmental samples

 Fresenius Z. Anal. Chem. 334 (1989) 627.
- L. Chiang, B. D. James, R. J. Magree
 Adsorptive stripping voltammetry of some trace
 elements in biological samples. Nickel, arsenic,
 aluminum and selenium
 Mikrochim. Acta (1989) 149–152.

Appendix

Report for the example determination of aluminum in drinking water

======== METROHM 746 VA TRACE ANALYZER (5.746.0101) ========== : 06040939 User: : 1999-06-04 09:40:38 Run: Date: 1999-06-04 Modified Time: 09:39:28 Sample table: -Pos. Ident.1/S1 Ident.2/S2 Ident.3/S3 Method.call Sample size/S0 tap water Method : AB131
Title : Determination of aluminum. AB131
Remark1 : Determination of Al at 60 °C
Remark2 : 20mL sample + 2mL buffer --> pH 4.5 + 120µL Erio R (0.5 g/L) Substance : Al Comments : 328.8 ng Mass conc.: 16.44 ug/L Mass 1 ug/L (6.08%) MC.dev. : Add.mass : 200 ng Cal.dev. V0.sample: 20 mL VR U/mV I/nA I.mean Std.dev. I.delta Comments -412 -25.69 -24.98 0.9975 01 -412 -24.27 10 -411 -41.00 -40.94 0.0863 -15.96 11 -413 -40.87 -53.86 -55.64 -54.75 1.258 -13.81 -413 2.0 -413 Techn. Y.reg/offset Slope Nonlin. Substance Mean deviat. Al std.add. -2.529e-08 -0.001702 9.781e-10 SOLUTIONS max. 40 Soln.name Pos. Std.subst. C# Workg.com.var Remark +/- Res.dev. % Final results Comments 1.00 6.08 Al = 16.439 ug/L

Method print for the determination of aluminum

Title: Determination of aluminum. AB131

	Instructions	t/s	Main parameters			Auxiliary parameters		
1 2 3	DOS/M SMPL/M PURGE		V.added V.fraction	2.000	mL mL	V.total		
4 5 6	STIR DOS>M PURGE	180.0	Rot.speed Soln.name			V.add	0.120 mL	
7 8 9	(ADD PURGE STIR	180.0	Rot.speed	2000	/min			
10 11 12	0PURGE SEGMENT PURGE		Segm.name	csv				
13 14 15	ADD>M ADD)2 END		Soln.name	Al-std		V.add	0.200 mL	
Meth	nod: AB131		SEGMENT cs					

	Instructi	ons t/s	Main parameters		Auxiliary parameters				
1 2 3 4 5 6 7 8 9	(REP STIR HMDE DPMODE MEAS 0STIR SWEEP 0MEAS REP)1	5.0	Drop size U.ampl t.step U.meas	7 -50 0.40 -350 -300 -650	mV s mV mV mV mV	t.meas t.puls	ell norn	20.0 ms 40.0 ms	
	END		Not bpecu	2000	/ 111111				
Meth	nod: AB131			TANCES - csv					
	Recogniti	on				ay / Pl			
	U.verify U.tol (+/-) U.width min U.width max I.threshold		120 mV 50 mV 10 mV 10 mV 100 mV		I.scale U.div U.begin U.end		auto		
	Baseline		Eva			aluation			
	Type Scope dU.front S.front dU.rear S.rear	linea whole auto auto auto auto 2000-11-28	r		Mode Quanti Sign.	ity digits	VA I.peak 4		
			17:11:34						
Teci Cur	nnique ve type	std.add. linear			NOUTTI	1.	-2.529e- -0.0017		
		Additions							
	n.name	Al-std							
Mass Rang Rang	s conc. ge min ge max onc./cm		/L /L /L /L	g/L g/L g/L		g/L g/L g/L		g/L g/L g/L	
Metho	Method: AB131 CALCULATION max. 15 lines								
Quant			R##, C##, A##					Sig.dig.	
Al		R1000=MC:					 #g/L	5	