Application Bulletin

Metrohm

Of interest for: Laboratories for of trace elemen	water analysis and the determination No. 44/1 e		
Colorimetric determination of boron			
Summary	The Bulletin describes a colorimetric method for the determination of boron with the aid of curcumin, when boron is present in very small quantities.		
Apparatus	▶ 2.662.0010 Photometer with light guide		
Reagents	 Curcumin solution dissolve 0.125 g curcumin in 100 mL glacial acetic acid with slight warming, and filter into a dark-glass bottle. Caustic soda 10% NaOH solution. 		
	 Sulphuric/acetic acid mixture take 50 mL 96% pure glacial acetic acid and add slowly, with cooling, 50 mL conc. H₂SO₄. 		
	▶ Extraction solution make a mixture of 5 parts methylethyl ketone and 2 parts chloroform, and dissolve 10 mg AR grade phenol in 100 mL of this mixture. This solution should be freshly prepared every day.		
	▶ Standard boric acid solution 10 ⁻² mol/L H ₃ BO ₃ solution should be kept in stock, and the necessary 10 ⁻⁵ or 10 ⁻⁶ mol/L solution made from it by dilution shortly before the experiment is begun.		
Method	According to the amount of boron present, take a sample of 5 to 20 mL, add 1 mL of the caustic soda solution, and dry over a water-bath in a platinum or quartz evaporating dish. Then add 3 mL of the curcumin reagent, and heat the dish in an oven at 60 °C for 10 min, shaking it occasionally to dissolve the residue. After cooling to room temperature, pipette 3 mL sulphuric/acetic acid mixture into the sample, shake to ensure thorough mixing, and leave standing for 20 min. Now add 20 mL distilled water to the sample, and wash it into a separating funnel with a further 80 mL distilled water.		
	Now add the extraction solution to the sample in the separating funnel, the first addition being 10 mL and subsequent additions being of 6 mL each at intervals of 1 min, shaking in between additions. All the extract so obtained is then filtered into the colorimetric cell.		
	Carry out the measurement with the 662 Photometer at 555 nm.		
	▶ A blank control sample and 2 – 3 standard comparison samples (e.g. samples of known boron content) should be measured concurrently with each determination; the result is obtained by comparison with the blank control.		
Calculation	The result is obtained by plotting a calibration curve.		
Limits of determination	0.02 mg/L B		

No. 44/1 e	A Metrolim	Page 2
Colorimetric determination of boron		
Remarks	 This method has been developed primarily for the analysis of mineral wa curve was plotted for 0.02 0.4 mg/L B in the presence of 1000 mg Na and 2 mg Fe²⁺/L. The extinction values obtained are somewhat lower the case with a pure boric acid solution. Samples containing more than 0.05 mg/L B must be diluted before an bert/Beer's law is valid over the range 0.02 0.05 mg/L B. Fluorides vitiate the determination and must be removed by the Gaestel/III. Oxidising agents also interfere with the determination, and therefore have Hayes and Metcalfe, and also Elwell and Wood, have described other (see literature references below). 	*, 1000 mg Ca ²⁺ nan would be the alysis. The Lam- luré method. te to be reduced.
Literature	➤ Thierig/Umland, Fresenius, Z. Anal. Chem, <u>211</u> , 161 (1965)	
	► Hayes/Metcalfe, Analyst, <u>87</u> , 956 (1962) and <u>88</u> , 471 (1963)	
	► Elwell/Wood, Analyst, <u>88</u> , 475 (1963)	
	▶ Gaestel/Huré, Bull. Soc. Chim. France, <u>16</u> , 830 (1949)	