

Application Bulletin

Of interest to: Metal industry A 10

Routine determination of copper in brass, bronze, German silver and electroplating baths

Summary

A routine method for the determination of copper is described. After dissolving the sample and adding a KI/KCNS solution, the freed iodine is back-titrated with thiosulfate. The endpoint indication is potentiometric.

Apparatus and accessories

- Titrino or Titrando with Dosino or Dosimat
- · Magnetic Swing-out Stirrer
- Exchange unit
- Pt Titrode 6.0431.100 with electrode cable 6.2104.020

Reagents

- Titrant $c(Na_2S_2O_3) = 0.2 \text{ mol/L}$: Dissolve 49.64 g Na₂S₂O₃ * 5 H₂O in CO₂ - free dist. H₂O and fill up to 1 L.
- Copper standard c(Cu⁺²) = 0.1 mol/L:
 Dissolve 24.968 g CuSO₄ * 5 H₂O in dist. H₂O, add 10 mL conc. H₂SO₄ and fill up to 1 L with dist. H₂O.
- Reacting solution:
 Dissolve 7 g KI and 53 g KCNS in dist. H₂O and fill up to 1 L.
- Urea solution: w(urea) = 10% in dist. H₂O
- Sulfuric acid: $w(H_2SO_4) = 96\%$
- Nitric acid: w(HNO₃) = 35%

Sample preparation

Acidic copper baths only containing Cu(II) can be used directly. In all other cases, place an electroplating bath sample or alloy containing approx. 200 mg Cu in a glass beaker and in a fume cupboard carefully add 10 mL HNO_3 . When the greatest reaction is over, add 2 mL H_2SO_4 , and heat until the white sulfuric acid fumes are given off. Allow to cool, then mix with 1 mL urea solution and 25 mL distilled H_2O .

Routine determination of copper in brass, bronze, German silver ...

Titer determination of the thiosulfate solution

Pipet 20.0 mL Cu standard into a glass beaker, mix with 1 mL H_2SO_4 and 25 mL reacting solution and immediately titrate the freed iodine with thiosulfate.

$$2 \operatorname{Cu}^{2^{+}} + 2 \operatorname{KI} \rightarrow \operatorname{I}_{2} + 2 \operatorname{Cu}^{+}$$

Titer: C01 / EP1 = C31

EP1 = mL thiosulfate up to the 1. EP

C01 = 10 (20 mL 0.1 mol/L corresponds to 10 mL 0.2 mol/L Cu^{2+})

Analysis

Add 25 mL reacting solution to the digestion solution and immediately titrate the freed iodine with thiosulfate.

Calculation

 $1 \text{ mL } c(\text{Na}_2\text{S}_2\text{O}_3) = 0.1 \text{ mol/L} = 12.709 \text{ mg Cu}$

% Cu = EP1 * C01 * C02 * C31 / C00

C00 = Sample size in g

C01 = 12.709

C02 = 0.1 (for %)

C31 = Titer of the thiosulfate solution

Remarks

- After digestion, no excess HNO₃ should be present, otherwise this would also react with KI, falsifying the result.
- The more economical KI/KCNS solution can be used instead of the expensive KI.

Literature

- Agterdenbos, J. / Elberse, P.A.
 Rapid iodometric determination of copper in some copper-base alloys
 Talanta 13, (1966) 523-524
- Bastius,H.
 Zur jodometrischen Bestimmung des Kupfers Fresenius,J.Anal.Chem. <u>250</u>, (1970) 169-172

Routine determination of copper in brass, bronze, German silver ...

Figures

Fig. 1 Parameter report Titrino

Routine determination of copper in brass, bronze, German silver ...

'fr		
785 DMP Titrino	02287	785.0010
user	MEIER	
date 1999-06-17	time 17:04	6
U(init)	-58 mV DET U	*****
smpl size 0.36	476 g	
EP1 16.	854 ml	113 mV
Kupfer 54.9	528 %	
stop V reached		
========		

'cu
785 DMP Titrino 02287 785.0010
user MEIER
date 1999-06-17 time 17:04 6
start V 0.000 ml DET U *******
2.0 ml/div dU=100.0 mV/div

'BMP-File: C:\DATASCAN\ARQUYX.bmp

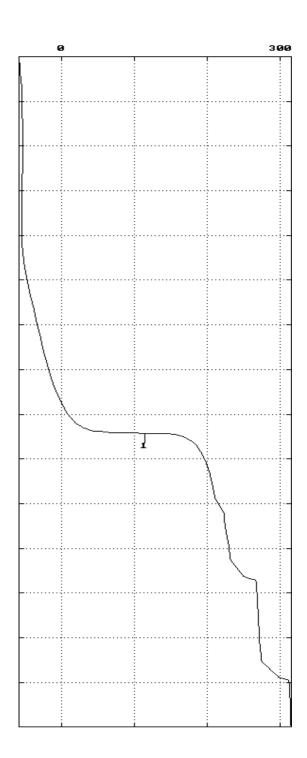


Fig. 2 Results report and titration curve: Cu in brass